Complete restructure from patterns/examples/reference to technology-focused directories: • Created technology-specific directories with comprehensive documentation: - /tdarr/ - Transcoding automation with gaming-aware scheduling - /docker/ - Container management with GPU acceleration patterns - /vm-management/ - Virtual machine automation and cloud-init - /networking/ - SSH infrastructure, reverse proxy, and security - /monitoring/ - System health checks and Discord notifications - /databases/ - Database patterns and troubleshooting - /development/ - Programming language patterns (bash, nodejs, python, vuejs) • Enhanced CLAUDE.md with intelligent context loading: - Technology-first loading rules for automatic context provision - Troubleshooting keyword triggers for emergency scenarios - Documentation maintenance protocols with automated reminders - Context window management for optimal documentation updates • Preserved valuable content from .claude/tmp/: - SSH security improvements and server inventory - Tdarr CIFS troubleshooting and Docker iptables solutions - Operational scripts with proper technology classification • Benefits achieved: - Self-contained technology directories with complete context - Automatic loading of relevant documentation based on keywords - Emergency-ready troubleshooting with comprehensive guides - Scalable structure for future technology additions - Eliminated context bloat through targeted loading 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
3.0 KiB
3.0 KiB
Python Debugging Reference
Common Error Patterns
ImportError / ModuleNotFoundError
# Check Python path
python -c "import sys; print('\n'.join(sys.path))"
# Check installed packages
pip list
pip show <package_name>
# Install missing packages
pip install -r requirements.txt
pip install <package_name>
Virtual Environment Issues
# Check current environment
which python
which pip
# Recreate virtual environment
rm -rf venv/
python -m venv venv
source venv/bin/activate # Linux/Mac
# venv\Scripts\activate # Windows
pip install -r requirements.txt
Memory Issues
import tracemalloc
import psutil
import os
# Memory profiling
tracemalloc.start()
# ... your code ...
current, peak = tracemalloc.get_traced_memory()
print(f"Current memory usage: {current / 1024 / 1024:.1f} MB")
print(f"Peak memory usage: {peak / 1024 / 1024:.1f} MB")
# System memory
process = psutil.Process(os.getpid())
print(f"RSS memory: {process.memory_info().rss / 1024 / 1024:.1f} MB")
Debugging Tools
Using pdb debugger
import pdb
def problematic_function():
x = 10
pdb.set_trace() # Execution will pause here
y = x * 2
return y
# Or use breakpoint() in Python 3.7+
def modern_debug():
x = 10
breakpoint() # Same as pdb.set_trace()
return x
Logging setup
import logging
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('debug.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def example_function():
logger.debug("Starting function")
try:
result = risky_operation()
logger.info(f"Operation successful: {result}")
return result
except Exception as e:
logger.error(f"Operation failed: {e}", exc_info=True)
raise
Performance Debugging
Profile code execution
import cProfile
import pstats
# Profile a function
cProfile.run('your_function()', 'profile_output.prof')
# Analyze results
stats = pstats.Stats('profile_output.prof')
stats.sort_stats('cumulative').print_stats(10)
Line-by-line profiling
# Install line_profiler
pip install line_profiler
# Add @profile decorator to functions
# Run with:
kernprof -l -v your_script.py
Check for memory leaks
import gc
import objgraph
# Show most common types
objgraph.show_most_common_types()
# Track object growth
objgraph.show_growth()
Database Debugging
SQLAlchemy query debugging
import logging
# Enable SQL query logging
logging.basicConfig()
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)
logging.getLogger('sqlalchemy.dialects').setLevel(logging.DEBUG)
logging.getLogger('sqlalchemy.pool').setLevel(logging.DEBUG)
Connection issues
# Test database connection
try:
engine.connect()
print("Database connection successful")
except Exception as e:
print(f"Database connection failed: {e}")