This commit adds default OPS value constants and type hints to key functions,
improving code documentation and IDE support.
## Changes Made
1. **Add default OPS constants** (creation_helpers.py)
- DEFAULT_BATTER_OPS: Default OPS by rarity (1-5)
- DEFAULT_STARTER_OPS: Default OPS-against for starters (99, 1-5)
- DEFAULT_RELIEVER_OPS: Default OPS-against for relievers (99, 1-5)
- Comprehensive comments explaining usage
- Single source of truth for fallback values
2. **Update batters/creation.py**
- Import DEFAULT_BATTER_OPS
- Replace 6 hardcoded if-checks with clean loop over constants
- Add type hints to post_player_updates function
- Import Dict from typing
3. **Update pitchers/creation.py**
- Import DEFAULT_STARTER_OPS and DEFAULT_RELIEVER_OPS
- Replace 12 hardcoded if-checks with clean loops over constants
- Add type hints to post_player_updates function
- Import Dict from typing
4. **Add typing import** (creation_helpers.py)
- Import Dict, List, Tuple, Optional for type hints
- Enables type hints throughout helper functions
## Impact
### Before
```python
# Scattered hardcoded values (batters)
if 1 not in average_ops:
average_ops[1] = 1.066
if 2 not in average_ops:
average_ops[2] = 0.938
# ... 4 more if-checks
# Scattered hardcoded values (pitchers)
if 99 not in sp_average_ops:
sp_average_ops[99] = 0.388
# ... 5 more if-checks for starters
# ... 6 more if-checks for relievers
```
### After
```python
# Clean, data-driven approach (batters)
for rarity, default_ops in DEFAULT_BATTER_OPS.items():
if rarity not in average_ops:
average_ops[rarity] = default_ops
# Clean, data-driven approach (pitchers)
for rarity, default_ops in DEFAULT_STARTER_OPS.items():
if rarity not in sp_average_ops:
sp_average_ops[rarity] = default_ops
for rarity, default_ops in DEFAULT_RELIEVER_OPS.items():
if rarity not in rp_average_ops:
rp_average_ops[rarity] = default_ops
```
### Benefits
✅ Eliminates 18 if-checks across batters and pitchers
✅ Single source of truth for default OPS values
✅ Easy to modify values (change constant, not scattered code)
✅ Self-documenting with clear constant names and comments
✅ Type hints improve IDE support and catch errors early
✅ Function signatures now document expected types
✅ Consistent with other recent refactorings
## Test Results
✅ 42/42 tests pass
✅ All existing functionality preserved
✅ 100% backward compatible
## Files Modified
- creation_helpers.py: +35 lines (3 constants + typing import)
- batters/creation.py: -4 lines net (cleaner code + type hints)
- pitchers/creation.py: -8 lines net (cleaner code + type hints)
**Net change:** More constants, less scattered magic numbers, better types.
Part of ongoing refactoring to reduce code fragility.
495 lines
22 KiB
Python
495 lines
22 KiB
Python
import datetime
|
|
import urllib.parse
|
|
import pandas as pd
|
|
from typing import Dict
|
|
|
|
from creation_helpers import (
|
|
get_all_pybaseball_ids, sanitize_name, CLUB_LIST, FRANCHISE_LIST, pd_players_df,
|
|
mlbteam_and_franchise, NEW_PLAYER_COST, RARITY_BASE_COSTS,
|
|
should_update_player_description, calculate_rarity_cost_adjustment,
|
|
DEFAULT_STARTER_OPS, DEFAULT_RELIEVER_OPS
|
|
)
|
|
from db_calls import db_post, db_get, db_put, db_patch
|
|
from defenders import calcs_defense as cde
|
|
from . import calcs_pitcher as cpi
|
|
from exceptions import logger
|
|
from rarity_thresholds import get_pitcher_thresholds
|
|
|
|
|
|
def get_pitching_stats(
|
|
file_path: str = None, start_date: datetime.datetime = None, end_date: datetime.datetime = None,
|
|
ignore_limits: bool = False):
|
|
print('Reading pitching stats...')
|
|
min_vl = 20 if not ignore_limits else 1
|
|
min_vr = 40 if not ignore_limits else 1
|
|
if file_path is not None:
|
|
vl_basic = pd.read_csv(f'{file_path}vlhh-basic.csv').query(f'TBF >= {min_vl}')
|
|
vr_basic = pd.read_csv(f'{file_path}vrhh-basic.csv').query(f'TBF >= {min_vr}')
|
|
total_basic = pd.merge(vl_basic, vr_basic, on="playerId", suffixes=('_vL', '_vR'))
|
|
|
|
vl_rate = pd.read_csv(f'{file_path}vlhh-rate.csv').query(f'TBF >= {min_vl}')
|
|
vr_rate = pd.read_csv(f'{file_path}vrhh-rate.csv').query(f'TBF >= {min_vr}')
|
|
total_rate = pd.merge(vl_rate, vr_rate, on="playerId", suffixes=('_vL', '_vR'))
|
|
|
|
return pd.merge(total_basic, total_rate, on="playerId", suffixes=('', '_rate'))
|
|
|
|
else:
|
|
raise LookupError(f'Date-based stat pulls not implemented, yet. Please provide batting csv files.')
|
|
# vrb_url = f'https://www.fangraphs.com/leaders/splits-leaderboards?splitArr=6&splitArrPitch=&position=P' \
|
|
# f'&autoPt=false&splitTeams=false&statType=player&statgroup=1' \
|
|
# f'&startDate={start_date.year}-{start_date.month}-{start_date.day}' \
|
|
# f'&endDate={end_date.year}-{end_date.month}-{end_date.day}' \
|
|
# f'&players=&filter=&groupBy=season&sort=4,1&wxTemperature=&wxPressure=&wxAirDensity=' \
|
|
# f'&wxElevation=&wxWindSpeed='
|
|
# vrr_url = f'https://www.fangraphs.com/leaders/splits-leaderboards?splitArr=6&splitArrPitch=&position=P' \
|
|
# f'&autoPt=false&splitTeams=false&statType=player&statgroup=3' \
|
|
# f'&startDate={start_date.year}-{start_date.month}-{start_date.day}' \
|
|
# f'&endDate={end_date.year}-{end_date.month}-{end_date.day}' \
|
|
# f'&players=&filter=&groupBy=season&sort=4,1&wxTemperature=&wxPressure=&wxAirDensity=' \
|
|
# f'&wxElevation=&wxWindSpeed='
|
|
# vlb_url = f'https://www.fangraphs.com/leaders/splits-leaderboards?splitArr=5&splitArrPitch=&position=P' \
|
|
# f'&autoPt=false&splitTeams=false&statType=player&statgroup=1' \
|
|
# f'&startDate={start_date.year}-{start_date.month}-{start_date.day}' \
|
|
# f'&endDate={end_date.year}-{end_date.month}-{end_date.day}' \
|
|
# f'&players=&filter=&groupBy=season&sort=4,1&wxTemperature=&wxPressure=&wxAirDensity=' \
|
|
# f'&wxElevation=&wxWindSpeed='
|
|
# vlr_url = f'https://www.fangraphs.com/leaders/splits-leaderboards?splitArr=5&splitArrPitch=&position=P' \
|
|
# f'&autoPt=false&splitTeams=false&statType=player&statgroup=3' \
|
|
# f'&startDate={start_date.year}-{start_date.month}-{start_date.day}' \
|
|
# f'&endDate={end_date.year}-{end_date.month}-{end_date.day}' \
|
|
# f'&players=&filter=&groupBy=season&sort=4,1&wxTemperature=&wxPressure=&wxAirDensity=' \
|
|
# f'&wxElevation=&wxWindSpeed='
|
|
#
|
|
# soup = BeautifulSoup(requests.get(vrb_url).text, 'html.parser')
|
|
# time.sleep(3)
|
|
# table = soup.find('a', {'class': 'data-export'})
|
|
|
|
|
|
async def pd_pitchingcards_df(cardset_id: int):
|
|
bc_query = await db_get('pitchingcards', params=[('cardset_id', cardset_id), ('short_output', True)])
|
|
if bc_query['count'] == 0:
|
|
raise ValueError(f'No pitching cards returned from Paper Dynasty API')
|
|
return pd.DataFrame(bc_query['cards']).rename(columns={'id': 'pitchingcard_id', 'player': 'player_id'})
|
|
|
|
|
|
async def pd_pitchingcardratings_df(cardset_id: int, season: int, pitching_cards: pd.DataFrame = None):
|
|
vl_query = await db_get(
|
|
'pitchingcardratings', params=[('cardset_id', cardset_id), ('vs_hand', 'L'), ('short_output', True)])
|
|
vr_query = await db_get(
|
|
'pitchingcardratings', params=[('cardset_id', cardset_id), ('vs_hand', 'R'), ('short_output', True)])
|
|
if 0 in [vl_query['count'], vr_query['count']]:
|
|
raise ValueError(f'No pitching card ratings returned from Paper Dynasty API')
|
|
vl = pd.DataFrame(vl_query['ratings'])
|
|
vr = pd.DataFrame(vr_query['ratings'])
|
|
ratings = (pd.merge(vl, vr, on='pitchingcard', suffixes=('_vL', '_vR'))
|
|
.rename(columns={'pitchingcard': 'pitchingcard_id'}))
|
|
|
|
def get_total_ops(df_data):
|
|
ops_vl = df_data['obp_vL'] + df_data['slg_vL']
|
|
ops_vr = df_data['obp_vR'] + df_data['slg_vR']
|
|
return (ops_vr + ops_vl + max(ops_vl, ops_vr)) / 3
|
|
ratings['total_OPS'] = ratings.apply(get_total_ops, axis=1)
|
|
|
|
# Get season-appropriate rarity thresholds
|
|
thresholds = get_pitcher_thresholds(season)
|
|
|
|
# Need starter_rating to determine rarity - merge with pitching cards if provided
|
|
if pitching_cards is not None:
|
|
ratings = pd.merge(
|
|
ratings,
|
|
pitching_cards[['pitchingcard_id', 'starter_rating']],
|
|
on='pitchingcard_id',
|
|
how='left'
|
|
)
|
|
|
|
def new_rarity_id(df_data):
|
|
if pd.isna(df_data.get('starter_rating')):
|
|
return 5 # Default to Common if no starter rating
|
|
if df_data['starter_rating'] > 3:
|
|
return thresholds.get_rarity_for_starter(df_data['total_OPS'])
|
|
else:
|
|
return thresholds.get_rarity_for_reliever(df_data['total_OPS'])
|
|
|
|
ratings['new_rarity_id'] = ratings.apply(new_rarity_id, axis=1)
|
|
|
|
# Drop starter_rating as it will be re-merged from pitching_cards in post_player_updates
|
|
ratings = ratings.drop(columns=['starter_rating'])
|
|
|
|
return ratings
|
|
|
|
|
|
def match_player_lines(
|
|
all_pitching: pd.DataFrame, all_players: pd.DataFrame, df_p: pd.DataFrame, is_custom: bool = False):
|
|
def get_pids(df_data):
|
|
return get_all_pybaseball_ids([df_data["playerId"]], 'fangraphs', is_custom, df_data['Name_vL'])
|
|
|
|
print(f'Now pulling mlbam player IDs...')
|
|
ids_and_names = all_pitching.apply(get_pids, axis=1)
|
|
player_data = (ids_and_names
|
|
.merge(all_players, how='left', left_on='key_bbref', right_on='bbref_id')
|
|
.query('key_mlbam == key_mlbam')
|
|
.set_index('key_bbref', drop=False))
|
|
print(f'Matched mlbam to pd players.')
|
|
|
|
step_pitching = pd.merge(
|
|
player_data, all_pitching, left_on='key_fangraphs', right_on='playerId', sort=False
|
|
).set_index('key_bbref', drop=False)
|
|
final_pitching = step_pitching.join(df_p, rsuffix='_r')
|
|
|
|
return final_pitching
|
|
|
|
|
|
async def create_new_players(
|
|
final_pitching: pd.DataFrame, cardset: dict, card_base_url: str, release_dir: str, player_desc: str):
|
|
new_players = []
|
|
new_mlbplayers = {}
|
|
|
|
def create_pitchers(df_data):
|
|
f_name = sanitize_name(df_data["name_first"]).title()
|
|
l_name = sanitize_name(df_data["name_last"]).title()
|
|
new_players.append({
|
|
'p_name': f'{f_name} {l_name}',
|
|
'cost': NEW_PLAYER_COST,
|
|
'image': f'{card_base_url}/{df_data["player_id"]}/'
|
|
f'pitchingcard{urllib.parse.quote("?d=")}{release_dir}',
|
|
'mlbclub': CLUB_LIST[df_data['Tm_vL']],
|
|
'franchise': FRANCHISE_LIST[df_data['Tm_vL']],
|
|
'cardset_id': cardset['id'],
|
|
'set_num': int(float(df_data['key_fangraphs'])),
|
|
'rarity_id': 99,
|
|
'pos_1': 'P',
|
|
'description': f'{player_desc}',
|
|
'bbref_id': df_data.name,
|
|
'fangr_id': int(float(df_data['key_fangraphs'])),
|
|
'strat_code': int(float(df_data['key_mlbam']))
|
|
})
|
|
new_mlbplayers[df_data.name] = {
|
|
'first_name': sanitize_name(df_data["name_first"]).title(),
|
|
'last_name': sanitize_name(df_data["name_last"]).title(),
|
|
'key_mlbam': int(float(df_data['key_mlbam'])),
|
|
'key_fangraphs': int(float(df_data['key_fangraphs'])),
|
|
'key_bbref': df_data['key_bbref'],
|
|
'key_retro': df_data['key_retro']
|
|
}
|
|
|
|
final_pitching[final_pitching['player_id'].isnull()].apply(create_pitchers, axis=1)
|
|
print(f'Creating {len(new_players)} new players...')
|
|
for x in new_players:
|
|
mlb_query = await db_get('mlbplayers', params=[('key_bbref', x['bbref_id'])])
|
|
if mlb_query['count'] > 0:
|
|
x['mlbplayer_id'] = mlb_query['players'][0]['id']
|
|
else:
|
|
new_mlb = await db_post('mlbplayers/one', payload=new_mlbplayers[x['bbref_id']])
|
|
x['mlbplayer_id'] = new_mlb['id']
|
|
|
|
this_player = await db_post('players', payload=x)
|
|
final_pitching.at[x['bbref_id'], 'player_id'] = this_player['player_id']
|
|
final_pitching.at[x['bbref_id'], 'p_name'] = this_player['p_name']
|
|
print(f'Player IDs linked to pitching stats.\n{len(final_pitching.values)} players remain\n')
|
|
|
|
return len(new_players)
|
|
|
|
|
|
def get_stat_df(input_path: str, final_pitching: pd.DataFrame):
|
|
def get_hand(df_data):
|
|
if df_data['Name'][-1] == '*':
|
|
return 'L'
|
|
else:
|
|
return 'R'
|
|
|
|
print(f'Reading pitching peripheral stats...')
|
|
pit_data = (pd.read_csv(f'{input_path}pitching.csv')
|
|
.drop_duplicates(subset=['Name-additional'], keep='first')
|
|
.set_index('Name-additional'))
|
|
pit_data['pitch_hand'] = pit_data.apply(get_hand, axis=1)
|
|
pitching_stats = final_pitching.join(pit_data, lsuffix='_l')
|
|
print(f'Stats are tallied\n{len(pitching_stats.values)} players remain\n')
|
|
|
|
return pitching_stats
|
|
|
|
|
|
async def calculate_pitching_cards(pitching_stats: pd.DataFrame, cardset: dict, season_pct: float, post_pitchers: bool):
|
|
pitching_cards = []
|
|
|
|
def create_pitching_card(df_data):
|
|
logger.info(f'Creating pitching card for {df_data["name_first"]} {df_data["name_last"]} / fg ID: {df_data["key_fangraphs"]}')
|
|
pow_data = cde.pow_ratings(float(df_data['Inn_def']), df_data['GS'], df_data['G'])
|
|
try:
|
|
pitching_cards.append({
|
|
"player_id": int(float(df_data['player_id'])),
|
|
"key_bbref": df_data.name,
|
|
"key_fangraphs": int(float(df_data['key_fangraphs'])),
|
|
"key_mlbam": int(float(df_data['key_mlbam'])),
|
|
"key_retro": df_data['key_retro'],
|
|
"name_first": df_data["name_first"].title(),
|
|
"name_last": df_data["name_last"].title(),
|
|
"balk": cpi.balks(df_data['BK'], df_data['IP'], season_pct),
|
|
"wild_pitch": cpi.wild_pitches(df_data['WP'], df_data['IP'], season_pct),
|
|
"hold": cde.hold_pitcher(df_data['caught_stealing_perc'], int(df_data['pickoffs']), season_pct),
|
|
"starter_rating": pow_data[0],
|
|
"relief_rating": pow_data[1],
|
|
"closer_rating": cpi.closer_rating(int(df_data['GF']), int(df_data['SV']), int(df_data['G'])),
|
|
"hand": df_data['pitch_hand'],
|
|
"batting": f'#1W{df_data["pitch_hand"]}-C'
|
|
})
|
|
except Exception as e:
|
|
logger.error(f'Skipping fg ID {df_data["key_fangraphs"]} due to: {e}')
|
|
|
|
print(f'Calculating pitching cards...')
|
|
pitching_stats.apply(create_pitching_card, axis=1)
|
|
print(f'Cards are complete.\n\nPosting cards now...')
|
|
if post_pitchers:
|
|
resp = await db_put('pitchingcards', payload={'cards': pitching_cards}, timeout=30)
|
|
print(f'Response: {resp}\n\nMatching pitching card database IDs to player stats...')
|
|
|
|
pc_df = await pd_pitchingcards_df(cardset['id'])
|
|
pitching_stats = pitching_stats.merge(pc_df, how='left', on='player_id').set_index('key_bbref', drop=False)
|
|
|
|
return pitching_stats
|
|
|
|
|
|
async def create_position(season_pct: float, pitching_stats: pd.DataFrame, post_pitchers: bool, df_p: pd.DataFrame):
|
|
pit_positions = []
|
|
|
|
def create_pit_position(df_data):
|
|
if df_data["key_bbref"] in df_p.index:
|
|
logger.debug(f'Running P stats for {df_data["p_name"]}')
|
|
pit_positions.append({
|
|
"player_id": int(df_data['player_id']),
|
|
"position": 'P',
|
|
"innings": float(df_p.at[df_data["key_bbref"], 'Inn_def']),
|
|
"range": cde.range_pitcher(
|
|
rs_value=int(df_p.at[df_data["key_bbref"], 'bis_runs_total']),
|
|
season_pct=season_pct
|
|
),
|
|
"error": cde.get_any_error(
|
|
pos_code='p',
|
|
errors=int(df_p.at[df_data["key_bbref"], 'E_def']),
|
|
chances=int(df_p.at[df_data["key_bbref"], 'chances']),
|
|
season_pct=season_pct
|
|
)
|
|
})
|
|
else:
|
|
try:
|
|
pit_positions.append({
|
|
"player_id": int(df_data['key_bbref']),
|
|
"position": 'P',
|
|
"innings": 1,
|
|
"range": 5,
|
|
"error": 51
|
|
})
|
|
except Exception as e:
|
|
logger.error(f'Could not create pitcher position for {df_data["key_bbref"]}')
|
|
|
|
print(f'Calculating pitcher fielding lines now...')
|
|
pitching_stats.apply(create_pit_position, axis=1)
|
|
print(f'Fielding is complete.\n\nPosting positions now...')
|
|
if post_pitchers:
|
|
resp = await db_put('cardpositions', payload={'positions': pit_positions}, timeout=30)
|
|
print(f'Response: {resp}\n')
|
|
|
|
|
|
async def calculate_pitcher_ratings(pitching_stats: pd.DataFrame, post_pitchers: bool):
|
|
pitching_ratings = []
|
|
|
|
def create_pitching_card_ratings(df_data):
|
|
logger.info(f'Calculating pitching card ratings for {df_data.name}')
|
|
try:
|
|
pitching_ratings.extend(cpi.get_pitcher_ratings(df_data))
|
|
except Exception as e:
|
|
logger.error(f'Could not create a pitching card for {df_data["key_fangraphs"]}')
|
|
|
|
print(f'Calculating card ratings...')
|
|
pitching_stats.apply(create_pitching_card_ratings, axis=1)
|
|
print(f'Ratings are complete\n\nPosting ratings now...')
|
|
if post_pitchers:
|
|
resp = await db_put('pitchingcardratings', payload={'ratings': pitching_ratings}, timeout=30)
|
|
print(f'Response: {resp}\n\nPulling all positions to set player positions...')
|
|
|
|
|
|
async def post_player_updates(
|
|
cardset: Dict[str, any],
|
|
player_description: str,
|
|
card_base_url: str,
|
|
release_dir: str,
|
|
is_liveseries: bool,
|
|
post_players: bool,
|
|
season: int
|
|
) -> int:
|
|
p_data = await pd_players_df(cardset['id'])
|
|
p_data.set_index('player_id', drop=False)
|
|
|
|
# Use LEFT JOIN to keep all pitchers, even those without ratings
|
|
pitching_cards = await pd_pitchingcards_df(cardset['id'])
|
|
pitching_ratings = await pd_pitchingcardratings_df(cardset['id'], season, pitching_cards)
|
|
|
|
total_ratings = pd.merge(
|
|
pitching_cards,
|
|
pitching_ratings,
|
|
on='pitchingcard_id',
|
|
how='left' # Keep all pitching cards
|
|
)
|
|
|
|
# Assign default rarity (Common/5) for pitchers without ratings
|
|
if 'new_rarity_id' not in total_ratings.columns:
|
|
total_ratings['new_rarity_id'] = 5
|
|
elif total_ratings['new_rarity_id'].isna().any():
|
|
total_ratings['new_rarity_id'] = total_ratings['new_rarity_id'].fillna(5)
|
|
|
|
# Assign default total_OPS for pitchers without ratings (Common reliever default)
|
|
if 'total_OPS' in total_ratings.columns:
|
|
missing_ops = total_ratings[total_ratings['total_OPS'].isna()]
|
|
if not missing_ops.empty:
|
|
logger.warning(f"pitchers.creation.post_player_updates - {len(missing_ops)} pitchers missing total_OPS, assigning default 0.702: {missing_ops[['player_id', 'pitchingcard_id']].to_dict('records')}")
|
|
total_ratings['total_OPS'] = total_ratings['total_OPS'].fillna(0.702)
|
|
|
|
player_data = pd.merge(
|
|
p_data,
|
|
total_ratings,
|
|
on='player_id'
|
|
).set_index('player_id', drop=False)
|
|
del total_ratings
|
|
|
|
# p_query = await db_get('mlbplayers')
|
|
# mlb_players = pd.DataFrame(p_query['players'])
|
|
|
|
def get_pids(df_data):
|
|
# if df_data['key_mlbam'] in
|
|
return get_all_pybaseball_ids([df_data["bbref_id"]], 'bbref')
|
|
|
|
ids_and_names = player_data.apply(get_pids, axis=1)
|
|
player_data = (ids_and_names
|
|
.merge(player_data, how='left', left_on='key_bbref', right_on='bbref_id')
|
|
.query('key_mlbam == key_mlbam')
|
|
.set_index('key_bbref', drop=False))
|
|
|
|
player_updates = {} # { <player_id> : [ (param pairs) ] }
|
|
sp_rarity_group = player_data.query('rarity == new_rarity_id and starter_rating >= 4').groupby('rarity')
|
|
sp_average_ops = sp_rarity_group['total_OPS'].mean().to_dict()
|
|
rp_rarity_group = player_data.query('rarity == new_rarity_id and starter_rating < 4').groupby('rarity')
|
|
rp_average_ops = rp_rarity_group['total_OPS'].mean().to_dict()
|
|
|
|
# Fill in missing rarity averages with defaults
|
|
for rarity, default_ops in DEFAULT_STARTER_OPS.items():
|
|
if rarity not in sp_average_ops:
|
|
sp_average_ops[rarity] = default_ops
|
|
|
|
for rarity, default_ops in DEFAULT_RELIEVER_OPS.items():
|
|
if rarity not in rp_average_ops:
|
|
rp_average_ops[rarity] = default_ops
|
|
|
|
def get_player_updates(df_data):
|
|
def avg_ops(rarity_id, starter_rating):
|
|
if starter_rating >= 4:
|
|
return sp_average_ops[rarity_id]
|
|
else:
|
|
return rp_average_ops[rarity_id]
|
|
|
|
params = []
|
|
|
|
# Check if description should be updated using extracted business logic
|
|
if should_update_player_description(
|
|
cardset_name=cardset['name'],
|
|
player_cost=df_data['cost'],
|
|
current_description=df_data['description'],
|
|
new_description=player_description
|
|
):
|
|
params = [('description', f'{player_description}')]
|
|
logger.debug(
|
|
f"pitchers.creation.post_player_updates - Setting description for player_id={df_data['player_id']}: "
|
|
f"'{df_data['description']}' -> '{player_description}' (cost={df_data['cost']}, cardset={cardset['name']})"
|
|
)
|
|
else:
|
|
logger.debug(
|
|
f"pitchers.creation.post_player_updates - Skipping description update for player_id={df_data['player_id']}: "
|
|
f"current='{df_data['description']}', proposed='{player_description}' (cost={df_data['cost']}, cardset={cardset['name']})"
|
|
)
|
|
|
|
if is_liveseries:
|
|
team_data = mlbteam_and_franchise(int(float(df_data['key_mlbam'])))
|
|
|
|
if df_data['mlbclub'] != team_data['mlbclub'] and team_data['mlbclub'] is not None:
|
|
params.extend([('mlbclub', team_data['mlbclub'])])
|
|
if df_data['franchise'] != team_data['franchise'] and team_data['franchise'] is not None:
|
|
params.extend([('franchise', team_data['franchise'])])
|
|
|
|
# if release_directory not in df_data['image']:
|
|
params.extend([('image', f'{card_base_url}/{df_data["player_id"]}/pitchingcard'
|
|
f'{urllib.parse.quote("?d=")}{release_dir}')])
|
|
|
|
if df_data['cost'] == NEW_PLAYER_COST:
|
|
params.extend([
|
|
('cost',
|
|
round(RARITY_BASE_COSTS[df_data['new_rarity_id']] * df_data['total_OPS'] /
|
|
avg_ops(df_data['new_rarity_id'], df_data['starter_rating']))),
|
|
('rarity_id', df_data['new_rarity_id'])
|
|
])
|
|
|
|
elif df_data['rarity'] != df_data['new_rarity_id']:
|
|
# Calculate adjusted cost for rarity change using lookup table
|
|
new_cost = calculate_rarity_cost_adjustment(
|
|
old_rarity=df_data['rarity'],
|
|
new_rarity=df_data['new_rarity_id'],
|
|
old_cost=df_data['cost']
|
|
)
|
|
params.extend([('cost', new_cost), ('rarity_id', df_data['new_rarity_id'])])
|
|
|
|
if len(params) > 0:
|
|
if df_data.player_id not in player_updates.keys():
|
|
player_updates[df_data.player_id] = params
|
|
else:
|
|
player_updates[df_data.player_id].extend(params)
|
|
|
|
player_data.apply(get_player_updates, axis=1)
|
|
|
|
print(f'Sending {len(player_updates)} player updates to PD database...')
|
|
if post_players:
|
|
for x in player_updates:
|
|
await db_patch('players', object_id=x, params=player_updates[x])
|
|
|
|
return len(player_updates)
|
|
|
|
|
|
async def run_pitchers(
|
|
cardset: dict, input_path: str, card_base_url: str, season: int, release_directory: str,
|
|
player_description: str, season_pct: float, post_players: bool, post_pitchers: bool, is_liveseries: bool,
|
|
ignore_limits: bool, pull_fielding: bool = True, is_custom: bool = False):
|
|
print(f'Pulling PD player IDs...')
|
|
pd_players = await pd_players_df(cardset['id'])
|
|
|
|
all_stats = get_pitching_stats(file_path=input_path, ignore_limits=ignore_limits)
|
|
print(f'Processed {len(all_stats.values)} pitchers\n')
|
|
|
|
print(f'Pulling pitcher defense...')
|
|
if pull_fielding:
|
|
df_p = cde.get_bbref_fielding_df('p', season)
|
|
else:
|
|
df_p = pd.DataFrame()
|
|
|
|
pit_step1 = match_player_lines(all_stats, pd_players, df_p, is_custom)
|
|
if post_players:
|
|
new_pitchers = await create_new_players(
|
|
pit_step1, cardset, card_base_url, release_directory, player_description
|
|
)
|
|
else:
|
|
new_pitchers = 0
|
|
|
|
pitching_stats = get_stat_df(input_path, pit_step1)
|
|
del all_stats, pit_step1
|
|
|
|
pitching_stats = await calculate_pitching_cards(pitching_stats, cardset, season_pct, post_pitchers)
|
|
|
|
await create_position(season_pct, pitching_stats, post_pitchers, df_p)
|
|
await calculate_pitcher_ratings(pitching_stats, post_pitchers)
|
|
await post_player_updates(
|
|
cardset, player_description, card_base_url, release_directory, is_liveseries, post_players, season)
|
|
|
|
return {
|
|
'tot_pitchers': len(pitching_stats.index),
|
|
'new_pitchers': new_pitchers,
|
|
'pitching_stats': pitching_stats
|
|
}
|
|
|
|
|
|
|