import asyncio import copy import csv import datetime import html5lib import logging import random import requests import calcs_batter as cba import calcs_defense as cde import calcs_pitcher as cpi import pandas as pd import pybaseball as pb import pydantic import sys from creation_helpers import pd_players_df, get_batting_stats, pd_battingcards_df, pd_battingcardratings_df from db_calls import db_get, db_put, db_post, db_patch from typing import Literal from bs4 import BeautifulSoup date = f'{datetime.datetime.now().year}-{datetime.datetime.now().month}-{datetime.datetime.now().day}' log_level = logging.INFO logging.basicConfig( filename=f'logs/{date}.log', format='%(asctime)s - card-creation - %(levelname)s - %(message)s', level=log_level ) CARD_BASE_URL = 'https://pd.manticorum.com/api/players' def sanitize_name(start_name: str) -> str: return (start_name .replace("é", "e") .replace("á", "a") .replace(".", "") .replace("Á", "A") .replace("ñ", "n") .replace("ó", "o") .replace("í", "i") .replace("ú", "u")) def get_args(args): logging.info(f'Process arguments: {args}') final_args = {} for x in args: if "=" not in x: raise TypeError(f'Invalid = argument: {x}') key, value = x.split("=") logging.info(f'key: {key} / value: {value}') if key in final_args: raise ValueError(f'Duplicate argument: {key}') final_args[key] = value return final_args # class BattingStat(pydantic.BaseModel): # fg_id: int # vs_hand: Literal['L', 'R'] # pa: int # hit: int # single: int # double: int # triple: int # homerun: int # rbi: int # bb: int # ibb: int # so: int # hbp: int # gidp: int # sb: int # cs: int # avg: float # hard_rate: float = None # med_rate: float = None # soft_rate: float = None # ifh_rate: float = None # hr_per_fb: float = None # ld_rate: float = None # iffb_rate: float = None # fb_rate: float = None # pull_rate: float = None # center_rate: float = None # oppo_rate: float = None async def main(args): arg_data = get_args(args) # cardset_name = input(f'What is the name of this Cardset? ') cardset_name = arg_data['cardset_name'] print(f'Searching for cardset: {cardset_name}') c_query = await db_get('cardsets', params=[('name', cardset_name)]) if c_query['count'] == 0: print(f'I do not see a cardset named {cardset_name}') return cardset = c_query['cardsets'][0] del c_query if 'season' in arg_data: season = arg_data['season'] else: season = int(cardset['name'][:4]) game_count = int(arg_data['games_played']) if game_count < 1 or game_count > 162: print(f'Game count has to be between 1 and 162.') return season_pct = game_count / 162 print(f'Cardset ID: {cardset["id"]} / Season: {season}\nGame count: {game_count} / Season %: {season_pct}\n') start_time = datetime.datetime.now() release_directory = f'{datetime.datetime.now().year}-{datetime.datetime.now().month}-{datetime.datetime.now().day}' input_path = f'data-input/{cardset["name"]} Cardset/' print('Reading batting stats...') all_batting = get_batting_stats(file_path=input_path) print(f'Processed {len(all_batting.values)} batters\n') def get_pids(df_data): q = pb.playerid_reverse_lookup([df_data["playerId"]], key_type="fangraphs") return_val = q.loc[0] if len(q.values) > 0 else None # print(f'lookup id: {df_data["playerId"]}\n{return_val}') return return_val def get_hand(df_data): if df_data['Name'][-1] == '*': return 'L' elif df_data['Name'][-1] == '#': return 'S' else: return 'R' print(f'Pulling PD player IDs...') pd_players = await pd_players_df(cardset['id']) # .set_index('bbref_id', drop=False) print(f'Now pulling mlbam player IDs...') ids_and_names = all_batting.apply(get_pids, axis=1) player_data = (ids_and_names .merge(pd_players, left_on='key_bbref', right_on='bbref_id') .query('key_mlbam == key_mlbam') .set_index('key_bbref', drop=False)) print(f'Matched mlbam to pd players.') new_players = [] def create_players(df_data): f_name = sanitize_name(df_data["name_first"]).title() l_name = sanitize_name(df_data["name_last"]).title() new_players.append({ 'p_name': f'{f_name} {l_name}', 'cost': 99999, 'image': f'{CARD_BASE_URL}/{df_data["player_id"]}/card?d={release_directory}', 'mlbclub': 'None', 'franchise': 'None', 'cardset_id': cardset['id'], 'set_num': df_data['key_fangraphs'], 'rarity_id': 99, 'pos_1': 'DH', 'description': f'Live {f_name} {l_name}', 'bbref_id': df_data.name, 'fangr_id': int(float(df_data['key_fangraphs'])) }) player_data[player_data['player_id'].isnull()].apply(create_players, axis=1) print(f'Creating {len(new_players)} new players...') for x in new_players: this_player = await db_post('players', payload=x) player_data.at[x['bbref_id'], 'player_id'] = this_player['player_id'] player_data.at[x['bbref_id'], 'p_name'] = this_player['p_name'] final_batting = pd.merge( player_data, all_batting, left_on='key_fangraphs', right_on='playerId', sort=False ).set_index('key_bbref', drop=False) del ids_and_names, all_batting, pd_players print(f'Player IDs linked to batting stats.\n{len(final_batting.values)} players remain\n') print(f'Reading baserunning stats...') run_data = (pd.read_csv(f'{input_path}running.csv') .set_index('Name-additional')) run_data['bat_hand'] = run_data.apply(get_hand, axis=1) offense_stats = final_batting.join(run_data) del final_batting, run_data print(f'Stats are tallied\n{len(offense_stats.values)} players remain\n\nCollecting defensive data from bbref...') if 'pull_fielding' in arg_data and arg_data['pull_fielding'].lower() == 'true': print(f'Pulling pitcher defense...') df_p = cde.get_bbref_fielding_df('p', season) print(f'Pulling catcher defense...') df_c = cde.get_bbref_fielding_df('c', season) print(f'Pulling first base defense...') df_1b = cde.get_bbref_fielding_df('1b', season) print(f'Pulling second base defense...') df_2b = cde.get_bbref_fielding_df('2b', season) print(f'Pulling third base defense...') df_3b = cde.get_bbref_fielding_df('3b', season) print(f'Pulling short stop defense...') df_ss = cde.get_bbref_fielding_df('ss', season) print(f'Pulling left field defense...') df_lf = cde.get_bbref_fielding_df('lf', season) print(f'Pulling center field defense...') df_cf = cde.get_bbref_fielding_df('cf', season) print(f'Pulling right field defense...') df_rf = cde.get_bbref_fielding_df('rf', season) print(f'Pulling outfield defense...') df_of = cde.get_bbref_fielding_df('of', season) print(f'Positions data is retrieved') batting_cards = [] def create_batting_card(df_data): s_data = cba.stealing( chances=df_data['SBO'], sb2s=df_data['SB2'], cs2s=df_data['CS2'], sb3s=df_data['SB3'], cs3s=df_data['CS3'], season_pct=season_pct ) batting_cards.append({ "player_id": df_data['player_id'], "key_bbref": df_data.name, "key_fangraphs": df_data['key_fangraphs'], "key_mlbam": df_data['key_mlbam'], "key_retro": df_data['key_retro'], "name_first": df_data["name_first"].title(), "name_last": df_data["name_last"].title(), "steal_low": s_data[0], "steal_high": s_data[1], "steal_auto": s_data[2], "steal_jump": s_data[3], "hit_and_run": cba.hit_and_run( df_data['AB_vL'], df_data['AB_vR'], df_data['H_vL'], df_data['H_vR'], df_data['HR_vL'], df_data['HR_vR'], df_data['SO_vL'], df_data['SO_vR'] ), "running": cba.running(df_data['XBT%']), "hand": df_data['bat_hand'] }) print(f'Calculating batting cards...') offense_stats.apply(create_batting_card, axis=1) print(f'Cards are complete.\n\nPosting cards now...') if 'post_updates' not in arg_data or arg_data['post_updates'].lower() == 'true': resp = await db_put('battingcards', payload={'cards': batting_cards}, timeout=30) print(f'Response: {resp}\n\nMatching batting card database IDs to player stats...') offense_stats = pd.merge( offense_stats, await pd_battingcards_df(cardset['id']), on='player_id') position_payload = [] def create_positions(df_data): for pos_data in [(df_1b, '1b'), (df_2b, '2b'), (df_3b, '3b'), (df_ss, 'ss')]: if df_data.name in pos_data[0].index: logging.debug(f'Running {pos_data[1]} stats for {player_data.at[df_data.name, "p_name"]}') position_payload.append({ "player_id": int(player_data.at[df_data.name, 'player_id']), "position": pos_data[1].upper(), "innings": float(pos_data[0].at[df_data.name, 'Inn_def']), "range": cde.get_if_range( pos_code=pos_data[1], tz_runs=int(pos_data[0].at[df_data.name, 'tz_runs_total']), r_dp=0, season_pct=season_pct ), "error": cde.get_any_error( pos_code=pos_data[1], errors=int(pos_data[0].at[df_data.name, 'E_def']), chances=int(pos_data[0].at[df_data.name, 'chances']), season_pct=season_pct ) }) of_arms = [] of_payloads = [] for pos_data in [(df_lf, 'lf'), (df_cf, 'cf'), (df_rf, 'rf')]: if df_data.name in pos_data[0].index: of_payloads.append({ "player_id": int(player_data.at[df_data.name, 'player_id']), "position": pos_data[1].upper(), "innings": float(pos_data[0].at[df_data.name, 'Inn_def']), "range": cde.get_of_range( pos_code=pos_data[1], tz_runs=int(pos_data[0].at[df_data.name, 'tz_runs_total']), season_pct=season_pct ) }) of_arms.append(int(pos_data[0].at[df_data.name, 'bis_runs_outfield'])) if df_data.name in df_of.index and len(of_arms) > 0 and len(of_payloads) > 0: error_rating = cde.get_any_error( pos_code=pos_data[1], errors=int(df_of.at[df_data.name, 'E_def']), chances=int(df_of.at[df_data.name, 'chances']), season_pct=season_pct ) arm_rating = cde.arm_outfield(of_arms) for f in of_payloads: f['error'] = error_rating f['arm'] = arm_rating position_payload.append(f) if df_data.name in df_c.index: if df_c.at[df_data.name, 'SB'] + df_c.at[df_data.name, 'CS'] == 0: arm_rating = 3 else: arm_rating = cde.arm_catcher( cs_pct=df_c.at[df_data.name, 'caught_stealing_perc'], raa=int(df_c.at[df_data.name, 'bis_runs_catcher_sb']), season_pct=season_pct ) position_payload.append({ "player_id": int(player_data.at[df_data.name, 'player_id']), "position": 'C', "innings": float(df_c.at[df_data.name, 'Inn_def']), "range": cde.range_catcher( rs_value=int(df_c.at[df_data.name, 'tz_runs_catcher']), season_pct=season_pct ), "error": cde.get_any_error( pos_code='c', errors=int(df_c.at[df_data.name, 'E_def']), chances=int(df_c.at[df_data.name, 'chances']), season_pct=season_pct ), "arm": arm_rating, "pb": cde.pb_catcher( pb=int(df_c.at[df_data.name, 'PB']), innings=int(float(df_c.at[df_data.name, 'Inn_def'])), season_pct=season_pct ), "overthrow": cde.ot_catcher( errors=int(df_c.at[df_data.name, 'E_def']), chances=int(df_c.at[df_data.name, 'chances']), season_pct=season_pct ) }) if 'pull_fielding' in arg_data and arg_data['pull_fielding'].lower() == 'true': print(f'Calculating fielding lines now...') offense_stats.apply(create_positions, axis=1) print(f'Fielding is complete.\n\nPosting positions now...') if 'post_updates' not in arg_data or arg_data['post_updates'].lower() == 'true': resp = await db_put('cardpositions', payload={'positions': position_payload}, timeout=30) print(f'Response: {resp}\n') batting_ratings = [] def create_batting_card_ratings(df_data): logging.info(f'Calculating card ratings for {df_data.name}') batting_ratings.extend(cba.get_batter_ratings(df_data)) print(f'Calculating card ratings...') offense_stats.apply(create_batting_card_ratings, axis=1) print(f'Ratings are complete\n\nPosting ratings now...') if 'post_updates' not in arg_data or arg_data['post_updates'].lower() == 'true': resp = await db_put('battingcardratings', payload={'ratings': batting_ratings}, timeout=30) print(f'Response: {resp}\n\nPulling fresh PD player data...') """ Pull fresh pd_players and set_index to player_id Pull fresh battingcards and set_index to player Pull fresh battingcardratings one hand at a time and join on battingcard (suffixes _vl and vR) Join battingcards (left) with battingcardratings (right) as total_ratings on id (left) and battingcard (right) Join pd_players (left) with total_ratings (right) on indeces Output: PD player list with batting card, ratings vL, and ratings vR Calculate Total OPS as OPSvL + OPSvR + min(OPSvL, OPSvR) / 3 and assign rarity_id For players with cost of 99999, set cost to * Total OPS / """ p_data = await pd_players_df(cardset['id']) p_data.set_index('player_id', drop=False) total_ratings = pd.merge( await pd_battingcards_df(cardset['id']), await pd_battingcardratings_df(cardset['id']), on='battingcard_id' ) player_data = pd.merge( p_data, total_ratings, on='player_id' ).set_index('player_id', drop=False) del total_ratings, p_data, offense_stats player_updates = {} # { : [ (param pairs) ] } rarity_group = player_data.query('rarity == new_rarity_id').groupby('rarity') average_ops = rarity_group['total_OPS'].mean().to_dict() # cost_groups = rarity_group['cost'].mean() def get_player_updates(df_data): base_costs = { 1: 810, 2: 270, 3: 90, 4: 30, 5: 10, 99: 2400 } params = [] if release_directory not in df_data['image']: params.extend([('image', f'{CARD_BASE_URL}/{df_data["player_id"]}/card?d={release_directory}')]) if df_data['cost'] == 99999: params.extend([ ('cost', round(base_costs[df_data['new_rarity_id']] * df_data['total_OPS'] / average_ops[df_data['new_rarity_id']])), ('rarity_id', df_data['new_rarity_id']) ]) elif df_data['rarity'] != df_data['new_rarity_id']: old_rarity = df_data['rarity'] new_rarity = df_data['new_rarity_id'] old_cost = df_data['cost'] new_cost = 0 if old_rarity == 1: if new_rarity == 2: new_cost = max(old_cost - 540, 100) elif new_rarity == 3: new_cost = max(old_cost - 720, 50) elif new_rarity == 4: new_cost = max(old_cost - 780, 15) elif new_rarity == 5: new_cost = max(old_cost - 800, 5) elif new_rarity == 99: new_cost = old_cost + 1600 elif old_rarity == 2: if new_rarity == 1: new_cost = old_cost + 540 elif new_rarity == 3: new_cost = max(old_cost - 180, 50) elif new_rarity == 4: new_cost = max(old_cost - 240, 15) elif new_rarity == 5: new_cost = max(old_cost - 260, 5) elif new_rarity == 99: new_cost = old_cost + 2140 elif old_rarity == 3: if new_rarity == 1: new_cost = old_cost + 720 elif new_rarity == 2: new_cost = old_cost + 180 elif new_rarity == 4: new_cost = max(old_cost - 60, 15) elif new_rarity == 5: new_cost = max(old_cost - 80, 5) elif new_rarity == 99: new_cost = old_cost + 2320 elif old_rarity == 4: if new_rarity == 1: new_cost = old_cost + 780 elif new_rarity == 2: new_cost = old_cost + 240 elif new_rarity == 3: new_cost = old_cost + 60 elif new_rarity == 5: new_cost = max(old_cost - 20, 5) elif new_rarity == 99: new_cost = old_cost + 2380 elif old_rarity == 5: if new_rarity == 1: new_cost = old_cost + 800 elif new_rarity == 2: new_cost = old_cost + 260 elif new_rarity == 3: new_cost = old_cost + 80 elif new_rarity == 4: new_cost = old_cost + 20 elif new_rarity == 99: new_cost = old_cost + 2400 elif old_rarity == 99: if new_rarity == 1: new_cost = max(old_cost - 1600, 800) elif new_rarity == 2: new_cost = max(old_cost - 2140, 100) elif new_rarity == 3: new_cost = max(old_cost - 2320, 50) elif new_rarity == 4: new_cost = max(old_cost - 2380, 15) elif new_rarity == 5: new_cost = max(old_cost - 2400, 5) if new_cost != 0: params.extend([('cost', new_cost), ('rarity_id', new_rarity)]) if len(params) > 0: player_updates[df_data.name] = params player_data.apply(get_player_updates, axis=1) print(f'Sending {len(player_updates)} player updates to PD database...') if 'post_updates' not in arg_data or arg_data['post_updates'].lower() == 'true': for x in player_updates: await db_patch('players', object_id=x, params=player_updates[x]) print(f'Batter updates are complete') start_time_two = datetime.datetime.now() run_time = start_time_two - start_time print(f'Total batting cards: {len(batting_cards)}\nNew cardset batters: {len(new_players)}\n' f'Batter runtime: {round(run_time.total_seconds())} seconds') if __name__ == '__main__': asyncio.run(main(sys.argv[1:]))