import asyncio import datetime import logging from logging.handlers import RotatingFileHandler import math import sys from typing import Literal import pandas as pd import pybaseball as pb from pybaseball import cache import urllib from creation_helpers import get_args, CLUB_LIST, FRANCHISE_LIST, sanitize_name from batters.stat_prep import DataMismatchError from db_calls import DB_URL, db_get, db_patch, db_post, db_put, db_delete from exceptions import log_exception, logger from retrosheet_transformer import load_retrosheet_csv import batters.calcs_batter as cba import defenders.calcs_defense as cde import pitchers.calcs_pitcher as cpi cache.enable() # date = f'{datetime.datetime.now().year}-{datetime.datetime.now().month}-{datetime.datetime.now().day}' # log_level = logger.INFO # logger.basicConfig( # filename=f'logs/{date}.log', # format='%(asctime)s - retrosheet_data - %(levelname)s - %(message)s', # level=log_level # ) RETRO_FILE_PATH = 'data-input/retrosheet/' EVENTS_FILENAME = 'retrosheets_events_2005.csv' # Now using transformer for new format compatibility PERSONNEL_FILENAME = 'retrosheets_personnel.csv' DATA_INPUT_FILE_PATH = 'data-input/2005 Live Cardset/' CARD_BASE_URL = f'{DB_URL}/v2/players/' start_time = datetime.datetime.now() RELEASE_DIRECTORY = f'{start_time.year}-{start_time.month}-{start_time.day}' PLAYER_DESCRIPTION = 'Live' # Live for Live Series # PLAYER_DESCRIPTION = 'May PotM' # PotM for promos PROMO_INCLUSION_RETRO_IDS = [ # AL # 'rodra001', # Alex Rodriguez (IF) # 'menck001', # Kevin Mench (OF) # 'colob001', # Bartolo Colon (SP) # 'ryanb001', # BJ Ryan (RP) # NL # 'delgc001', # Carlos Delgado (IF) # 'abreb001', # Bobby Abreu (OF) # 'haraa001', # Aaron Harang (SP) # 'hofft001', # Trevor Hoffman (RP) ] MIN_PA_VL = 20 if 'live' in PLAYER_DESCRIPTION.lower() else 1 # 1 for PotM MIN_PA_VR = 40 if 'live' in PLAYER_DESCRIPTION.lower() else 1 # 1 for PotM MIN_TBF_VL = MIN_PA_VL MIN_TBF_VR = MIN_PA_VR CARDSET_ID = 27 if 'live' in PLAYER_DESCRIPTION.lower() else 28 # 27: 2005 Live, 28: 2005 Promos # Per-Update Parameters SEASON_PCT = 162 / 162 # Full season START_DATE = 20050301 # YYYYMMDD format # END_DATE = 20050531 # YYYYMMDD format - May PotM END_DATE = 20051002 # End of 2005 regular season POST_DATA = True LAST_WEEK_RATIO = 0.0 if PLAYER_DESCRIPTION == 'Live' else 0.0 LAST_TWOWEEKS_RATIO = 0.0 LAST_MONTH_RATIO = 0.0 def date_from_int(integer_date: int) -> datetime.datetime: return datetime.datetime(int(str(integer_date)[:4]), int(str(integer_date)[4:6]), int(str(integer_date)[-2:])) def date_math(start_date: int, operator: Literal['+', '-'], day_delta: int = 0, month_delta: int = 0, year_delta: int = 0) -> int: if len(str(start_date)) != 8: log_exception(ValueError, 'Start date must be 8 digits long') if True in [day_delta < 0, month_delta < 0, year_delta < 0]: log_exception(ValueError, 'Time deltas must greater than or equal to 0; use `-` operator to go back in time') if day_delta > 28: log_exception(ValueError, 'Use month_delta for days > 28') if month_delta > 12: log_exception(ValueError, 'Use year_delta for months > 12') s_date = date_from_int(start_date) if year_delta > 0: s_date = datetime.datetime( s_date.year + year_delta if operator == '+' else s_date.year - year_delta, s_date.month, s_date.day ) if month_delta > 0: month_range = [12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] new_index = s_date.month + month_delta if operator == '+' else s_date.month - month_delta new_month = month_range[(new_index % 12)] new_year = s_date.year if new_index > 12: new_year += 1 elif new_index < 1: new_year -= 1 s_date = datetime.datetime( new_year, new_month, s_date.day ) fd = s_date + datetime.timedelta(days=day_delta if operator == '+' else day_delta * -1) return f'{str(fd.year).zfill(4)}{str(fd.month).zfill(2)}{str(fd.day).zfill(2)}' def weeks_between(start_date_int: int, end_date_int: int) -> int: start_date = date_from_int(start_date_int) end_date = date_from_int(end_date_int) delta = end_date - start_date return abs(round(delta.days / 7)) async def store_defense_to_csv(season: int): for position in ['c', '1b', '2b', '3b', 'ss', 'lf', 'cf', 'rf', 'of', 'p']: pos_df = cde.get_bbref_fielding_df(position, season) pos_df.to_csv(f'{DATA_INPUT_FILE_PATH}defense_{position}.csv') await asyncio.sleep(8) def get_batting_result_series(plays: pd.DataFrame, event_type: str, pitcher_hand: Literal['r', 'l'], col_name: str) -> pd.Series: this_series = plays[(plays.event_type == event_type) & (plays.pitcher_hand == pitcher_hand)].groupby('batter_id').count()['event_type'].astype(int).rename(col_name) return this_series def get_pitching_result_series(plays: pd.DataFrame, event_type: str, batter_hand: Literal['r', 'l'], col_name: str) -> pd.Series: this_series = plays[(plays.event_type == event_type) & (plays.batter_hand == batter_hand)].groupby('pitcher_id').count()['event_type'].astype(int).rename(col_name) return this_series def get_run_stat_df(input_path: str): run_data = pd.read_csv(f'{input_path}running.csv') #.set_index('Name-additional')) # if 'Player' in run_data: # run_data = run_data.rename(columns={'Player': 'Full Name'}) # if 'Name' in run_data: # run_data = run_data.rename(columns={'Name': 'Full Name'}) if 'Player-additional' in run_data: run_data = run_data.rename(columns={'Player-additional': 'key_bbref'}) if 'Name-additional' in run_data: run_data = run_data.rename(columns={'Name-additional': 'key_bbref'}) run_data = run_data[['key_bbref', 'Tm', 'ROE', 'XI', 'RS%', 'SBO', 'SB', 'CS', 'SB%', 'SB2', 'CS2', 'SB3', 'CS3', 'SBH', 'CSH', 'PO', 'PCS', 'OOB', 'OOB1', 'OOB2', 'OOB3', 'OOBHm', 'BT', 'XBT%', '1stS', '1stS2', '1stS3', '1stD', '1stD3', '1stDH', '2ndS', '2ndS3', '2ndSH']] run_data = run_data.fillna(0) return run_data.set_index('key_bbref') def get_periph_stat_df(input_path: str): pit_data = pd.read_csv(f'{input_path}pitching.csv') if 'Player-additional' in pit_data: pit_data = pit_data.rename(columns={'Player-additional': 'key_bbref'}) if 'Name-additional' in pit_data: pit_data = pit_data.rename(columns={'Name-additional': 'key_bbref'}) if 'Team' in pit_data: pit_data = pit_data.rename(columns={'Team': 'Tm'}) pit_data = pit_data[['key_bbref', 'Tm', 'GF', 'SHO', 'SV', 'IP', 'BK', 'WP']] pit_data = pit_data.fillna(0) return pit_data def get_player_ids(plays: pd.DataFrame, which: Literal['batters', 'pitchers']) -> pd.DataFrame: RETRO_PLAYERS = pd.read_csv(f'{RETRO_FILE_PATH}{PERSONNEL_FILENAME}') id_key = 'batter_id' if which == 'batters' else 'pitcher_id' players = pd.DataFrame() unique_players = pd.Series(plays[id_key].unique()).to_frame('id') players = pd.merge( left=RETRO_PLAYERS, right=unique_players, how='right', left_on='id', right_on='id' ).rename(columns={'id': id_key}) if PLAYER_DESCRIPTION not in ['Live', '1998']: msg = f'Player description is *{PLAYER_DESCRIPTION}* so dropping players not in PROMO_INCLUSION_RETRO_IDS' print(msg) logger.info(msg) # players = players.drop(players[players.index not in PROMO_INCLUSION_RETRO_IDS].index) players = players[players[id_key].isin(PROMO_INCLUSION_RETRO_IDS)] def get_pids(row): # return get_all_pybaseball_ids([row[id_key]], 'retro', full_name=f'{row["use_name"]} {row["last_name"]}') pull = pb.playerid_reverse_lookup([row[id_key]], key_type='retro') if len(pull.values) == 0: print(f'Could not find id {row[id_key]} in pybaseball lookup') return pull.loc[0][['key_mlbam', 'key_retro', 'key_bbref', 'key_fangraphs']] players = players[[id_key, 'last_name', 'use_name']] start_time = datetime.datetime.now() other_ids = players.apply(get_pids, axis=1) end_time = datetime.datetime.now() print(f'ID lookup: {(end_time - start_time).total_seconds():.2f}s') def clean_first(row): return sanitize_name(row['use_name']) def clean_last(row): return sanitize_name(row['last_name']) players['use_name'] = players.apply(clean_first, axis=1) players['last_name'] = players.apply(clean_last, axis=1) players = pd.merge( left=players, right=other_ids, left_on=id_key, right_on='key_retro' ) players = players.set_index(id_key) def get_bat_hand(row): pa_vl = plays[(plays.batter_id == row['key_retro']) & (plays.pitcher_hand == 'l')].groupby('result_batter_hand').count()['game_id'].astype(int) pa_vr = plays[(plays.batter_id == row['key_retro']) & (plays.pitcher_hand == 'r')].groupby('result_batter_hand').count()['game_id'].astype(int) l_vs_l = 0 if 'l' not in pa_vl else pa_vl['l'] l_vs_r = 0 if 'l' not in pa_vr else pa_vr['l'] r_vs_l = 0 if 'r' not in pa_vl else pa_vl['r'] r_vs_r = 0 if 'r' not in pa_vr else pa_vr['r'] # If player ONLY batted from one side (zero PAs from other side), classify as single-handed if sum([l_vs_l, l_vs_r]) == 0 and sum([r_vs_l, r_vs_r]) > 0: return 'R' elif sum([l_vs_l, l_vs_r]) > 0 and sum([r_vs_l, r_vs_r]) == 0: return 'L' # If player batted from both sides (even if limited sample), they're a switch hitter # This correctly identifies switch hitters regardless of total PA count if sum([l_vs_l, l_vs_r]) > 0 and sum([r_vs_l, r_vs_r]) > 0: return 'S' # Fallback for edge cases (shouldn't reach here in normal flow) if sum([l_vs_l, l_vs_r]) > sum([r_vs_l, r_vs_r]): return 'L' else: return 'R' def get_pitch_hand(row): first_event = plays.drop_duplicates('pitcher_id').loc[plays.pitcher_id == row['key_retro'], 'pitcher_hand'] return first_event.item() if which == 'batters': players['bat_hand'] = players.apply(get_bat_hand, axis=1) elif which == 'pitchers': players['pitch_hand'] = players.apply(get_pitch_hand, axis=1) return players def get_base_batting_df(file_path: str, start_date: int, end_date: int) -> list[pd.DataFrame, pd.DataFrame]: all_plays = load_retrosheet_csv(file_path) all_plays['date'] = all_plays['game_id'].str[3:-1].astype(int) date_plays = all_plays[(all_plays.date >= start_date) & (all_plays.date <= end_date)] all_player_ids = get_player_ids(all_plays, 'batters') pal_series = date_plays[(date_plays.batter_event == 't') & (date_plays.pitcher_hand == 'l')].groupby('batter_id').count()['event_type'].astype(int).rename('PA_vL') bs = pd.concat([all_player_ids, pal_series], axis=1) par_series = date_plays[(date_plays.batter_event == 't') & (date_plays.pitcher_hand == 'r')].groupby('batter_id').count()['event_type'].astype(int).rename('PA_vR') bs = pd.concat([bs, par_series], axis=1) abl_series = date_plays[(date_plays.ab == 't') & (date_plays.pitcher_hand == 'l')].groupby('batter_id').count()['event_type'].astype(int).rename('AB_vL') bs = pd.concat([bs, abl_series], axis=1) abr_series = date_plays[(date_plays.ab == 't') & (date_plays.pitcher_hand == 'r')].groupby('batter_id').count()['event_type'].astype(int).rename('AB_vR') bs = pd.concat([bs, abr_series], axis=1) core_df = bs.dropna().query(f'PA_vL >= {MIN_PA_VL} & PA_vR >= {MIN_PA_VR}') if LAST_WEEK_RATIO == 0.0 and LAST_TWOWEEKS_RATIO == 0.0 and LAST_MONTH_RATIO == 0.0: return [date_plays, core_df] base_num_weeks = weeks_between(start_date, end_date) if LAST_WEEK_RATIO > 0: new_start = date_math(end_date, '-', day_delta=7) week_plays = date_plays[(date_plays.date >= int(new_start)) & (date_plays.date <= end_date)] copies = round(base_num_weeks * LAST_WEEK_RATIO) for x in range(copies): date_plays = pd.concat([date_plays, week_plays], ignore_index=True) if LAST_TWOWEEKS_RATIO > 0: new_start = date_math(end_date, '-', day_delta=14) week_plays = date_plays[(date_plays.date >= int(new_start)) & (date_plays.date <= end_date)] copies = round(base_num_weeks * LAST_TWOWEEKS_RATIO) for x in range(copies): date_plays = pd.concat([date_plays, week_plays], ignore_index=True) if LAST_MONTH_RATIO > 0: new_start = date_math(end_date, '-', month_delta=1) week_plays = date_plays[(date_plays.date >= int(new_start)) & (date_plays.date <= end_date)] copies = round(base_num_weeks * LAST_MONTH_RATIO) for x in range(copies): date_plays = pd.concat([date_plays, week_plays], ignore_index=True) core_df = core_df.drop(columns=['PA_vL', 'PA_vR', 'AB_vL', 'AB_vR']) pal_series = date_plays[(date_plays.batter_event == 't') & (date_plays.pitcher_hand == 'l')].groupby('batter_id').count()['event_type'].astype(int).rename('PA_vL') core_df['PA_vL'] = pal_series par_series = date_plays[(date_plays.batter_event == 't') & (date_plays.pitcher_hand == 'r')].groupby('batter_id').count()['event_type'].astype(int).rename('PA_vR') core_df['PA_vR'] = par_series abl_series = date_plays[(date_plays.ab == 't') & (date_plays.pitcher_hand == 'l')].groupby('batter_id').count()['event_type'].astype(int).rename('AB_vL') core_df['AB_vL'] = abl_series abr_series = date_plays[(date_plays.ab == 't') & (date_plays.pitcher_hand == 'r')].groupby('batter_id').count()['event_type'].astype(int).rename('AB_vR') core_df['AB_vR'] = abr_series return [date_plays, core_df] def get_base_pitching_df(file_path: str, start_date: int, end_date: int) -> list[pd.DataFrame, pd.DataFrame]: all_plays = load_retrosheet_csv(file_path) all_plays['date'] = all_plays['game_id'].str[3:-1].astype(int) date_plays = all_plays[(all_plays.date >= start_date) & (all_plays.date <= end_date)] ps = get_player_ids(all_plays, 'pitchers') tbfl_series = date_plays[(date_plays.batter_event == 't') & (date_plays.batter_hand == 'l')].groupby('pitcher_id').count()['event_type'].astype(int).rename('TBF_vL') ps = pd.concat([ps, tbfl_series], axis=1) tbfr_series = date_plays[(date_plays.batter_event == 't') & (date_plays.batter_hand == 'r')].groupby('pitcher_id').count()['event_type'].astype(int).rename('TBF_vR') ps = pd.concat([ps, tbfr_series], axis=1) abl_series = date_plays[(date_plays.ab == 't') & (date_plays.batter_hand == 'l')].groupby('pitcher_id').count()['event_type'].astype(int).rename('AB_vL') ps = pd.concat([ps, abl_series], axis=1) abr_series = date_plays[(date_plays.ab == 't') & (date_plays.batter_hand == 'r')].groupby('pitcher_id').count()['event_type'].astype(int).rename('AB_vR') ps = pd.concat([ps, abr_series], axis=1) if PLAYER_DESCRIPTION in ['Live', '1998']: core_df = ps.dropna().query(f'TBF_vL >= {MIN_TBF_VL} & TBF_vR >= {MIN_TBF_VR}') else: core_df = ps.dropna() if LAST_WEEK_RATIO == 0.0 and LAST_TWOWEEKS_RATIO == 0.0 and LAST_MONTH_RATIO == 0.0: return [date_plays, core_df] base_num_weeks = weeks_between(start_date, end_date) if LAST_WEEK_RATIO > 0: new_start = date_math(end_date, '-', day_delta=7) week_plays = date_plays[(date_plays.date >= int(new_start)) & (date_plays.date <= end_date)] copies = round(base_num_weeks * LAST_WEEK_RATIO) for x in range(copies): date_plays = pd.concat([date_plays, week_plays], ignore_index=True) if LAST_TWOWEEKS_RATIO > 0: new_start = date_math(end_date, '-', day_delta=14) week_plays = date_plays[(date_plays.date >= int(new_start)) & (date_plays.date <= end_date)] copies = round(base_num_weeks * LAST_TWOWEEKS_RATIO) for x in range(copies): date_plays = pd.concat([date_plays, week_plays], ignore_index=True) if LAST_MONTH_RATIO > 0: new_start = date_math(end_date, '-', month_delta=1) week_plays = date_plays[(date_plays.date >= int(new_start)) & (date_plays.date <= end_date)] copies = round(base_num_weeks * LAST_MONTH_RATIO) for x in range(copies): date_plays = pd.concat([date_plays, week_plays], ignore_index=True) core_df = core_df.drop(columns=['TBF_vL', 'TBF_vR', 'AB_vL', 'AB_vR']) tbfl_series = date_plays[(date_plays.batter_event == 't') & (date_plays.batter_hand == 'l')].groupby('pitcher_id').count()['event_type'].astype(int).rename('TBF_vL') core_df['TBF_vL'] = tbfl_series tbfr_series = date_plays[(date_plays.batter_event == 't') & (date_plays.batter_hand == 'r')].groupby('pitcher_id').count()['event_type'].astype(int).rename('TBF_vR') core_df['TBF_vR'] = tbfr_series abl_series = date_plays[(date_plays.ab == 't') & (date_plays.batter_hand == 'l')].groupby('pitcher_id').count()['event_type'].astype(int).rename('AB_vL') core_df['AB_vL'] = abl_series abr_series = date_plays[(date_plays.ab == 't') & (date_plays.batter_hand == 'r')].groupby('pitcher_id').count()['event_type'].astype(int).rename('AB_vR') core_df['AB_vR'] = abr_series return [date_plays, core_df] def get_med_vL(row): high = 0.9 - row['Hard%_vL'] low = (row['SLG_vL'] - row['AVG_vL']) * 1.5 return round(max(min(high, low),0.1), 5) def get_med_vR(row): high = 0.9 - row['Hard%_vR'] low = (row['SLG_vR'] - row['AVG_vR']) * 1.5 return round(max(min(high, low),0.1), 5) def get_batting_stats_by_date(retro_file_path, start_date: int, end_date: int) -> pd.DataFrame: start = datetime.datetime.now() all_plays, batting_stats = get_base_batting_df(retro_file_path, start_date, end_date) print(f'Get base dataframe: {(datetime.datetime.now() - start).total_seconds():.2f}s') start = datetime.datetime.now() all_player_ids = batting_stats['key_retro'] logging.info(f'all_player_ids: {all_player_ids}') all_plays = all_plays[all_plays['batter_id'].isin(all_player_ids)] print(f'Shrink all_plays: {(datetime.datetime.now() - start).total_seconds():.2f}s') # Basic counting stats start = datetime.datetime.now() for event_type, vs_hand, col_name in [ ('home run', 'r', 'HR_vR'), ('home run', 'l', 'HR_vL'), ('single', 'r', '1B_vR'), ('single', 'l', '1B_vL'), ('double', 'r', '2B_vR'), ('double', 'l', '2B_vL'), ('triple', 'r', '3B_vR'), ('triple', 'l', '3B_vL'), ('walk', 'r', 'BB_vR'), ('walk', 'l', 'BB_vL'), ('strikeout', 'r', 'SO_vR'), ('strikeout', 'l', 'SO_vL'), ('hit by pitch', 'r', 'HBP_vR'), ('hit by pitch', 'l', 'HBP_vL') ]: this_series = get_batting_result_series(all_plays, event_type, vs_hand, col_name) batting_stats[col_name] = this_series print(f'Count basic stats: {(datetime.datetime.now() - start).total_seconds():.2f}s') # Bespoke counting stats start = datetime.datetime.now() def get_fb_vl(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batted_ball_type == 'f') & (all_plays.pitcher_hand == 'l')].count()['event_type'].astype(int) def get_fb_vr(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batted_ball_type == 'f') & (all_plays.pitcher_hand == 'r')].count()['event_type'].astype(int) def get_gb_vl(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batted_ball_type == 'G') & (all_plays.pitcher_hand == 'l')].count()['event_type'].astype(int) def get_gb_vr(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batted_ball_type == 'G') & (all_plays.pitcher_hand == 'r')].count()['event_type'].astype(int) def get_ld_vl(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batted_ball_type == 'l') & (all_plays.pitcher_hand == 'l')].count()['event_type'].astype(int) def get_ld_vr(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batted_ball_type == 'l') & (all_plays.pitcher_hand == 'r')].count()['event_type'].astype(int) def get_gdp_vl(row): dp = all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batter_event == 't') & (all_plays.pitcher_hand == 'l') & (all_plays.dp == 't')].count()['event_type'].astype(int) tp = all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batter_event == 't') & (all_plays.pitcher_hand == 'l') & (all_plays.tp == 't')].count()['event_type'].astype(int) return dp + tp def get_gdp_vr(row): dp = all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batter_event == 't') & (all_plays.pitcher_hand == 'r') & (all_plays.dp == 't')].count()['event_type'].astype(int) tp = all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.batter_event == 't') & (all_plays.pitcher_hand == 'r') & (all_plays.tp == 't')].count()['event_type'].astype(int) return dp + tp def get_bunt(row): return all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.bunt == 't')].count()['event_type'].astype(int) batting_stats['FB_vL'] = batting_stats.apply(get_fb_vl, axis=1) batting_stats['FB_vR'] = batting_stats.apply(get_fb_vr, axis=1) batting_stats['GB_vL'] = batting_stats.apply(get_gb_vl, axis=1) batting_stats['GB_vR'] = batting_stats.apply(get_gb_vr, axis=1) batting_stats['LD_vL'] = batting_stats.apply(get_ld_vl, axis=1) batting_stats['LD_vR'] = batting_stats.apply(get_ld_vr, axis=1) batting_stats['GDP_vL'] = batting_stats.apply(get_gdp_vl, axis=1) batting_stats['GDP_vR'] = batting_stats.apply(get_gdp_vr, axis=1) batting_stats['Bunts'] = batting_stats.apply(get_bunt, axis=1) print(f'Custom counting stats: {(datetime.datetime.now() - start).total_seconds():.2f}s') # Infield Hit % ifh_vl = all_plays[(all_plays.hit_val.str.contains('1|2|3')) & (all_plays.pitcher_hand == 'l') & (all_plays.hit_location.str.contains('1|2|3|4|5|6')) & (~all_plays.hit_location.str.contains('D', na=False))].groupby('batter_id').count()['event_type'].astype(int).rename('ifh_vL') ifh_vr = all_plays[(all_plays.hit_val.str.contains('1|2|3')) & (all_plays.pitcher_hand == 'r') & (all_plays.hit_location.str.contains('1|2|3|4|5|6')) & (~all_plays.hit_location.str.contains('D', na=False))].groupby('batter_id').count()['event_type'].astype(int).rename('ifh_vR') batting_stats['ifh_vL'] = ifh_vl batting_stats['ifh_vR'] = ifh_vr def get_pull_vl(row): pull_loc = '5|7' if row['bat_hand'] != 'L' else '3|9' x = all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.pitcher_hand == 'l') & (all_plays.hit_location.str.contains(pull_loc))].count()['event_type'].astype(int) return x def get_pull_vr(row): pull_loc = '5|7' if row['bat_hand'] == 'R' else '3|9' x = all_plays[(all_plays.batter_id == row['key_retro']) & (all_plays.pitcher_hand == 'r') & (all_plays.hit_location.str.contains(pull_loc))].count()['event_type'].astype(int) return x # Bespoke Queries batting_stats['pull_vL'] = batting_stats.apply(get_pull_vl, axis=1) batting_stats['pull_vR'] = batting_stats.apply(get_pull_vr, axis=1) center_vl = all_plays[(all_plays.pitcher_hand == 'l') & (all_plays.hit_location.str.contains('1|4|6|8'))].groupby('batter_id').count()['event_type'].astype(int).rename('center_vl') center_vr = all_plays[(all_plays.pitcher_hand == 'r') & (all_plays.hit_location.str.contains('1|4|6|8'))].groupby('batter_id').count()['event_type'].astype(int).rename('center_vr') batting_stats['center_vL'] = center_vl batting_stats['center_vR'] = center_vr oppo_vl = all_plays[(all_plays.pitcher_hand == 'l') & (all_plays.hit_location.str.contains('5|7'))].groupby('batter_id').count()['event_type'].astype(int).rename('oppo_vL') oppo_vr = all_plays[(all_plays.pitcher_hand == 'r') & (all_plays.hit_location.str.contains('5|7'))].groupby('batter_id').count()['event_type'].astype(int).rename('oppo_vR') batting_stats['oppo_vL'] = oppo_vl batting_stats['oppo_vR'] = oppo_vr # fill na to 0 following counting stats batting_stats = batting_stats.fillna(0) # Calculated Fields start = datetime.datetime.now() batting_stats['H_vL'] = batting_stats['1B_vL'] + batting_stats['2B_vL'] + batting_stats['3B_vL'] + batting_stats['HR_vL'] batting_stats['H_vR'] = batting_stats['1B_vR'] + batting_stats['2B_vR'] + batting_stats['3B_vR'] + batting_stats['HR_vR'] batting_stats['AVG_vL'] = round(batting_stats['H_vL'] / batting_stats['AB_vL'], 5) batting_stats['AVG_vR'] = round(batting_stats['H_vR'] / batting_stats['AB_vR'], 5) batting_stats['OBP_vL'] = round((batting_stats['H_vL'] + batting_stats['BB_vL'] + batting_stats['HBP_vL']) / batting_stats['PA_vL'], 5) batting_stats['OBP_vR'] = round((batting_stats['H_vR'] + batting_stats['BB_vR'] + batting_stats['HBP_vR']) / batting_stats['PA_vR'], 5) batting_stats['SLG_vL'] = round((batting_stats['1B_vL'] + batting_stats['2B_vL'] * 2 + batting_stats['3B_vL'] * 3 + batting_stats['HR_vL'] * 4) / batting_stats['AB_vL'], 5) batting_stats['SLG_vR'] = round((batting_stats['1B_vR'] + batting_stats['2B_vR'] * 2 + batting_stats['3B_vR'] * 3 + batting_stats['HR_vR'] * 4) / batting_stats['AB_vR'], 5) batting_stats['HR/FB_vL'] = round(batting_stats['HR_vL'] / batting_stats['FB_vL'], 5) batting_stats['HR/FB_vR'] = round(batting_stats['HR_vR'] / batting_stats['FB_vR'], 5) batting_stats['FB%_vL'] = round(batting_stats['FB_vL'] / (batting_stats['FB_vL'] + batting_stats['GB_vL'] + batting_stats['LD_vL']), 5) batting_stats['FB%_vR'] = round(batting_stats['FB_vR'] / (batting_stats['FB_vR'] + batting_stats['GB_vR'] + batting_stats['LD_vR']), 5) batting_stats['GB%_vL'] = round(batting_stats['GB_vL'] / (batting_stats['FB_vL'] + batting_stats['GB_vL'] + batting_stats['LD_vL']), 5) batting_stats['GB%_vR'] = round(batting_stats['GB_vR'] / (batting_stats['FB_vR'] + batting_stats['GB_vR'] + batting_stats['LD_vR']), 5) batting_stats['LD%_vL'] = round(batting_stats['LD_vL'] / (batting_stats['FB_vL'] + batting_stats['GB_vL'] + batting_stats['LD_vL']), 5) batting_stats['LD%_vR'] = round(batting_stats['LD_vR'] / (batting_stats['FB_vR'] + batting_stats['GB_vR'] + batting_stats['LD_vR']), 5) batting_stats['Hard%_vL'] = round(0.2 + batting_stats['SLG_vL'] - batting_stats['AVG_vL'], 5) batting_stats['Hard%_vR'] = round(0.2 + batting_stats['SLG_vR'] - batting_stats['AVG_vR'], 5) # def get_med_vL(row): # high = 0.9 - row['Hard%_vL'] # low = (row['SLG_vL'] - row['AVG_vL']) * 1.5 # return round(max(min(high, low),0.1), 5) # def get_med_vR(row): # high = 0.9 - row['Hard%_vR'] # low = (row['SLG_vR'] - row['AVG_vR']) * 1.5 # return round(max(min(high, low),0.1), 5) batting_stats['Med%_vL'] = batting_stats.apply(get_med_vL, axis=1) batting_stats['Med%_vR'] = batting_stats.apply(get_med_vR, axis=1) batting_stats['Soft%_vL'] = round(1 - batting_stats['Hard%_vL'] - batting_stats['Med%_vL'], 5) batting_stats['Soft%_vR'] = round(1 - batting_stats['Hard%_vR'] - batting_stats['Med%_vR'], 5) batting_stats['IFH%_vL'] = round(batting_stats['ifh_vL'] / batting_stats['H_vL'], 5) batting_stats['IFH%_vR'] = round(batting_stats['ifh_vR'] / batting_stats['H_vR'], 5) pull_val = round(batting_stats['pull_vL'] / (batting_stats['pull_vL'] + batting_stats['center_vL'] + batting_stats['oppo_vL']), 5) batting_stats['Pull%_vL'] = pull_val.clip(0.1, 0.6) pull_val = round(batting_stats['pull_vR'] / (batting_stats['pull_vR'] + batting_stats['center_vR'] + batting_stats['oppo_vR']), 5) batting_stats['Pull%_vR'] = pull_val.clip(0.1, 0.6) cent_val = round(batting_stats['center_vL'] / (batting_stats['pull_vL'] + batting_stats['center_vL'] + batting_stats['oppo_vL']), 5) batting_stats['Cent%_vL'] = cent_val.clip(0.1, 0.6) cent_val = round(batting_stats['center_vL'] / (batting_stats['pull_vR'] + batting_stats['center_vR'] + batting_stats['oppo_vR']), 5) batting_stats['Cent%_vR'] = cent_val.clip(0.1, 0.6) batting_stats['Oppo%_vL'] = round(1 - batting_stats['Pull%_vL'] - batting_stats['Cent%_vL'], 5) batting_stats['Oppo%_vR'] = round(1 - batting_stats['Pull%_vR'] - batting_stats['Cent%_vR'], 5) batting_stats = batting_stats.fillna(0) print(f'Calculated fields: {(datetime.datetime.now() - start).total_seconds():.2f}s') return batting_stats def get_pitching_stats_by_date(retro_file_path, start_date: int, end_date: int) -> pd.DataFrame: start = datetime.datetime.now() all_plays, pitching_stats = get_base_pitching_df(retro_file_path, start_date, end_date) print(f'Get base dataframe: {(datetime.datetime.now() - start).total_seconds():.2f}s') start = datetime.datetime.now() all_player_ids = pitching_stats['key_retro'] all_plays = all_plays[all_plays['pitcher_id'].isin(all_player_ids)] print(f'Shrink all_plays: {(datetime.datetime.now() - start).total_seconds():.2f}s') # Basic counting stats start = datetime.datetime.now() for event_type, vs_hand, col_name in [ ('home run', 'r', 'HR_vR'), ('home run', 'l', 'HR_vL'), ('single', 'r', '1B_vR'), ('single', 'l', '1B_vL'), ('double', 'r', '2B_vR'), ('double', 'l', '2B_vL'), ('triple', 'r', '3B_vR'), ('triple', 'l', '3B_vL'), ('walk', 'r', 'BB_vR'), ('walk', 'l', 'BB_vL'), ('strikeout', 'r', 'SO_vR'), ('strikeout', 'l', 'SO_vL'), ('hit by pitch', 'r', 'HBP_vR'), ('hit by pitch', 'l', 'HBP_vL'), ('intentional walk', 'l', 'IBB_vL'), ('intentional walk', 'r', 'IBB_vR') ]: this_series = get_pitching_result_series(all_plays, event_type, vs_hand, col_name) pitching_stats[col_name] = this_series print(f'Count basic stats: {(datetime.datetime.now() - start).total_seconds():.2f}s') pitching_stats = pitching_stats.fillna(0) # Bespoke counting stats start = datetime.datetime.now() def get_fb_vl(row): return all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batted_ball_type == 'f') & (all_plays.batter_hand == 'l')].count()['event_type'].astype(int) def get_fb_vr(row): return all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batted_ball_type == 'f') & (all_plays.batter_hand == 'r')].count()['event_type'].astype(int) def get_gb_vl(row): return all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batted_ball_type == 'G') & (all_plays.batter_hand == 'l')].count()['event_type'].astype(int) def get_gb_vr(row): return all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batted_ball_type == 'G') & (all_plays.batter_hand == 'r')].count()['event_type'].astype(int) def get_ld_vl(row): return all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batted_ball_type == 'l') & (all_plays.pitcher_hand == 'l')].count()['event_type'].astype(int) def get_ld_vr(row): return all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batted_ball_type == 'l') & (all_plays.pitcher_hand == 'r')].count()['event_type'].astype(int) pitching_stats['FB_vL'] = pitching_stats.apply(get_fb_vl, axis=1) pitching_stats['FB_vR'] = pitching_stats.apply(get_fb_vr, axis=1) pitching_stats['GB_vL'] = pitching_stats.apply(get_gb_vl, axis=1) pitching_stats['GB_vR'] = pitching_stats.apply(get_gb_vr, axis=1) pitching_stats['LD_vL'] = pitching_stats.apply(get_ld_vl, axis=1) pitching_stats['LD_vR'] = pitching_stats.apply(get_ld_vr, axis=1) pitching_stats['H_vL'] = pitching_stats['1B_vL'] + pitching_stats['2B_vL'] + pitching_stats['3B_vL'] + pitching_stats['HR_vL'] pitching_stats['H_vR'] = pitching_stats['1B_vR'] + pitching_stats['2B_vR'] + pitching_stats['3B_vR'] + pitching_stats['HR_vR'] print(f'Custom counting stats: {(datetime.datetime.now() - start).total_seconds():.2f}s') # Calculated Fields """ Oppo%_vL & R """ start = datetime.datetime.now() pitching_stats['AVG_vL'] = round(pitching_stats['H_vL'] / pitching_stats['AB_vL'], 5) pitching_stats['AVG_vR'] = round(pitching_stats['H_vR'] / pitching_stats['AB_vR'], 5) pitching_stats['OBP_vL'] = round((pitching_stats['H_vL'] + pitching_stats['BB_vL'] + pitching_stats['HBP_vL'] + pitching_stats['IBB_vL']) / pitching_stats['TBF_vL'], 5) pitching_stats['OBP_vR'] = round((pitching_stats['H_vR'] + pitching_stats['BB_vR'] + pitching_stats['HBP_vR'] + pitching_stats['IBB_vR']) / pitching_stats['TBF_vR'], 5) pitching_stats['SLG_vL'] = round((pitching_stats['1B_vL'] + pitching_stats['2B_vL'] * 2 + pitching_stats['3B_vL'] * 3 + pitching_stats['HR_vL'] * 4) / pitching_stats['AB_vL'], 5) pitching_stats['SLG_vR'] = round((pitching_stats['1B_vR'] + pitching_stats['2B_vR'] * 2 + pitching_stats['3B_vR'] * 3 + pitching_stats['HR_vR'] * 4) / pitching_stats['AB_vR'], 5) pitching_stats['HR/FB_vL'] = round(pitching_stats['HR_vL'] / pitching_stats['FB_vL'], 5) pitching_stats['HR/FB_vR'] = round(pitching_stats['HR_vR'] / pitching_stats['FB_vR'], 5) pitching_stats['Hard%_vL'] = round(0.2 + pitching_stats['SLG_vL'] - pitching_stats['AVG_vL'], 5) pitching_stats['Hard%_vR'] = round(0.2 + pitching_stats['SLG_vR'] - pitching_stats['AVG_vR'], 5) pitching_stats['Med%_vL'] = pitching_stats.apply(get_med_vL, axis=1) pitching_stats['Med%_vR'] = pitching_stats.apply(get_med_vR, axis=1) pitching_stats['Soft%_vL'] = round(1 - pitching_stats['Hard%_vL'] - pitching_stats['Med%_vL'], 5) pitching_stats['Soft%_vR'] = round(1 - pitching_stats['Hard%_vR'] - pitching_stats['Med%_vR'], 5) pitching_stats['FB%_vL'] = round(pitching_stats['FB_vL'] / (pitching_stats['FB_vL'] + pitching_stats['GB_vL'] + pitching_stats['LD_vL']), 5) pitching_stats['FB%_vR'] = round(pitching_stats['FB_vR'] / (pitching_stats['FB_vR'] + pitching_stats['GB_vR'] + pitching_stats['LD_vR']), 5) pitching_stats['GB%_vL'] = round(pitching_stats['GB_vL'] / (pitching_stats['FB_vL'] + pitching_stats['GB_vL'] + pitching_stats['LD_vL']), 5) pitching_stats['GB%_vR'] = round(pitching_stats['GB_vR'] / (pitching_stats['FB_vR'] + pitching_stats['GB_vR'] + pitching_stats['LD_vR']), 5) def get_oppo_vl(row): count = all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batter_hand == 'l') & (all_plays.hit_location.str.contains('5|7'))].count()['event_type'].astype(int) denom = all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batter_hand == 'l') & (all_plays.batter_event == 't')].count()['event_type'].astype(int) return round(count / denom, 5) def get_oppo_vr(row): count = all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batter_hand == 'r') & (all_plays.hit_location.str.contains('3|9'))].count()['event_type'].astype(int) denom = all_plays[(all_plays.pitcher_id == row['key_retro']) & (all_plays.batter_hand == 'r') & (all_plays.batter_event == 't')].count()['event_type'].astype(int) return round(count / denom, 5) pitching_stats['Oppo%_vL'] = pitching_stats.apply(get_oppo_vl, axis=1) pitching_stats['Oppo%_vR'] = pitching_stats.apply(get_oppo_vr, axis=1) pitching_stats = pitching_stats.fillna(0) print(f'Calculated fields: {(datetime.datetime.now() - start).total_seconds():.2f}s') return pitching_stats def calc_batting_cards(bs: pd.DataFrame, season_pct: float) -> pd.DataFrame: def create_batting_card(row): steal_data = cba.stealing( chances=int(row['SBO']), sb2s=int(row['SB2']), cs2s=int(row['CS2']), sb3s=int(row['SB3']), cs3s=int(row['CS3']), season_pct=1.0 ) y = pd.DataFrame({ 'key_bbref': [row['key_bbref']], 'steal_low': [steal_data[0]], 'steal_high': [steal_data[1]], 'steal_auto': [steal_data[2]], 'steal_jump': [steal_data[3]], 'hit_and_run': [cba.hit_and_run( row['AB_vL'], row['AB_vR'], row['H_vL'], row['H_vR'], row['HR_vL'], row['HR_vR'], row['SO_vL'], row['SO_vR'] )], 'bunt': [cba.bunting(row['Bunts'], season_pct)], 'running': [cba.running(row['XBT%'])], 'hand': [row['bat_hand']], }) return y.loc[0] all_cards = bs.apply(create_batting_card, axis=1) all_cards = all_cards.set_index('key_bbref') return all_cards def calc_pitching_cards(ps: pd.DataFrame, season_pct: float) -> pd.DataFrame: def create_pitching_card(row): pow_data = cde.pow_ratings(row['IP'], row['GS'], row['G']) y = pd.DataFrame({ "key_bbref": [row['key_bbref']], "balk": [cpi.balks(row['BK'], row['IP'], season_pct)], "wild_pitch": [cpi.wild_pitches(row['WP'], row['IP'], season_pct)], "hold": [cde.hold_pitcher(str(row['caught_stealing_perc']), int(row['pickoffs']), season_pct)], "starter_rating": [pow_data[0]], "relief_rating": [pow_data[1]], "closer_rating": [cpi.closer_rating(int(row['GF']), int(row['SV']), int(row['G']))], "batting": [f'#1W{row["pitch_hand"].upper()}-C'] }) return y.loc[0] all_cards = ps.apply(create_pitching_card, axis=1) all_cards = all_cards.set_index('key_bbref') return all_cards def calc_batter_ratings(bs: pd.DataFrame) -> pd.DataFrame: def create_batting_rating(row): if row['key_bbref'] == 'galaran01': pass ratings = cba.get_batter_ratings(row) ops_vl = ratings[0]['obp'] + ratings[0]['slg'] ops_vr = ratings[1]['obp'] + ratings[1]['slg'] total_ops = (ops_vl + ops_vr + min(ops_vr, ops_vl)) / 3 def calc_cost(total_ops, base_cost, base_ops, max_delta) -> int: delta = ((total_ops - base_ops) / 0.1) * 2 if delta < 1: delta = (max_delta * (1 - (total_ops / base_ops))) * -0.1 final_cost = base_cost + (max_delta * delta) return round(final_cost) if total_ops >= 1.2: rarity_id = 99 cost = calc_cost(total_ops, base_cost=2400, base_ops=1.215, max_delta=810) elif total_ops >= 1: rarity_id = 1 cost = calc_cost(total_ops, base_cost=810, base_ops=1.05, max_delta=270) elif total_ops >= 0.9: rarity_id = 2 cost = calc_cost(total_ops, base_cost=270, base_ops=0.95, max_delta=90) elif total_ops >= 0.8: rarity_id = 3 cost = calc_cost(total_ops, base_cost=90, base_ops=0.85, max_delta=30) elif total_ops >= 0.7: rarity_id = 4 cost = calc_cost(total_ops, base_cost=30, base_ops=0.75, max_delta=10) else: rarity_id = 5 cost = calc_cost(total_ops, base_cost=10, base_ops=0.61, max_delta=8) x = pd.DataFrame({ 'key_bbref': [row['key_bbref']], 'ratings_vL': [ratings[0]], 'ratings_vR': [ratings[1]], 'ops_vL': ops_vl, 'ops_vR': ops_vr, 'total_ops': total_ops, 'rarity_id': rarity_id, 'cost': cost }) return x.loc[0] all_ratings = bs.apply(create_batting_rating, axis=1) all_ratings = all_ratings.set_index('key_bbref') return all_ratings def calc_pitcher_ratings(ps: pd.DataFrame) -> pd.DataFrame: def create_pitching_rating(row): row['pitchingcard_id'] = row['key_fangraphs'] row['pitch_hand'] = row['pitch_hand'].upper() ratings = cpi.get_pitcher_ratings(row) ops_vl = ratings[0]['obp'] + ratings[0]['slg'] ops_vr = ratings[1]['obp'] + ratings[1]['slg'] total_ops = (ops_vl + ops_vr + min(ops_vr, ops_vl)) / 3 def calc_cost(total_ops, base_cost, base_ops, max_delta) -> int: delta = ((base_ops - total_ops) / 0.1) * 2 if delta < -0.9: delta = -0.95 final_cost = base_cost + (max_delta * delta) return round(final_cost) if row['starter_rating'] > 3: if total_ops <= 0.4: rarity_id = 99 cost = calc_cost(total_ops, 2400, 0.38, 810) elif total_ops <= 0.475: rarity_id = 1 cost = calc_cost(total_ops, 810, 0.44, 270) elif total_ops <= 0.53: rarity_id = 2 cost = calc_cost(total_ops, 270, 0.51, 90) elif total_ops <= 0.6: rarity_id = 3 cost = calc_cost(total_ops, 90, 0.575, 30) elif total_ops <= 0.675: rarity_id = 4 cost = calc_cost(total_ops, 30, 0.64, 10) else: rarity_id = 5 cost = calc_cost(total_ops, 10, 0.7, 8) else: if total_ops <= 0.325: rarity_id = 99 cost = calc_cost(total_ops, 2400, 0.38, 810) elif total_ops <= 0.4: rarity_id = 1 cost = calc_cost(total_ops, 810, 0.44, 270) elif total_ops <= 0.475: rarity_id = 2 cost = calc_cost(total_ops, 270, 0.51, 90) elif total_ops <= 0.55: rarity_id = 3 cost = calc_cost(total_ops, 90, 0.575, 30) elif total_ops <= 0.625: rarity_id = 4 cost = calc_cost(total_ops, 30, 0.64, 10) else: rarity_id = 5 cost = calc_cost(total_ops, 10, 0.7, 8) x = pd.DataFrame({ 'key_bbref': [row['key_bbref']], 'ratings_vL': [ratings[0]], 'ratings_vR': [ratings[1]], 'ops_vL': ops_vl, 'ops_vR': ops_vr, 'total_ops': total_ops, 'rarity_id': rarity_id, 'cost': cost }) return x.loc[0] all_ratings = ps.apply(create_pitching_rating, axis=1) all_ratings = all_ratings.set_index('key_bbref') return all_ratings def calc_positions(bs: pd.DataFrame) -> pd.DataFrame: df_c = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_c.csv').set_index('key_bbref') df_1b = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_1b.csv').set_index('key_bbref') df_2b = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_2b.csv').set_index('key_bbref') df_3b = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_3b.csv').set_index('key_bbref') df_ss = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_ss.csv').set_index('key_bbref') df_lf = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_lf.csv').set_index('key_bbref') df_cf = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_cf.csv').set_index('key_bbref') df_rf = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_rf.csv').set_index('key_bbref') df_of = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_of.csv').set_index('key_bbref') season_pct = 1.0 all_pos = [] def process_pos(row): no_data = True for pos_df, position in [(df_1b, '1b'), (df_2b, '2b'), (df_3b, '3b'), (df_ss, 'ss')]: if row['key_bbref'] in pos_df.index: logger.info(f'Running {position} stats for {row["use_name"]} {row["last_name"]}') try: if 'bis_runs_total' in pos_df.columns: average_range = (int(pos_df.at[row["key_bbref"], 'tz_runs_total']) + int(pos_df.at[row["key_bbref"], 'bis_runs_total']) + min( int(pos_df.at[row["key_bbref"], 'tz_runs_total']), int(pos_df.at[row["key_bbref"], 'bis_runs_total']) )) / 3 else: average_range = pos_df.at[row["key_bbref"], 'tz_runs_total'] if float(pos_df.at[row["key_bbref"], 'Inn_def']) >= 10.0: all_pos.append({ "key_bbref": row['key_bbref'], "position": position.upper(), "innings": float(pos_df.at[row["key_bbref"], 'Inn_def']), "range": cde.get_if_range( pos_code=position, tz_runs=round(average_range), r_dp=0, season_pct=season_pct ), "error": cde.get_any_error( pos_code=position, errors=int(pos_df.at[row["key_bbref"], 'E_def']), chances=int(pos_df.at[row["key_bbref"], 'chances']), season_pct=season_pct ) }) no_data = False except Exception as e: logger.info(f'Infield position failed: {e}') of_arms = [] of_payloads = [] for pos_df, position in [(df_lf, 'lf'), (df_cf, 'cf'), (df_rf, 'rf')]: if row["key_bbref"] in pos_df.index: try: if 'bis_runs_total' in pos_df.columns: average_range = (int(pos_df.at[row["key_bbref"], 'tz_runs_total']) + int(pos_df.at[row["key_bbref"], 'bis_runs_total']) + min( int(pos_df.at[row["key_bbref"], 'tz_runs_total']), int(pos_df.at[row["key_bbref"], 'bis_runs_total']) )) / 3 else: average_range = pos_df.at[row["key_bbref"], 'tz_runs_total'] if float(pos_df.at[row["key_bbref"], 'Inn_def']) >= 10.0: of_payloads.append({ "key_bbref": row['key_bbref'], "position": position.upper(), "innings": float(pos_df.at[row["key_bbref"], 'Inn_def']), "range": cde.get_of_range( pos_code=position, tz_runs=round(average_range), season_pct=season_pct ) }) of_run_rating = 'bis_runs_outfield' if 'bis_runs_outfield' in pos_df.columns else 'tz_runs_total' of_arms.append(int(pos_df.at[row["key_bbref"], of_run_rating])) no_data = False except Exception as e: logger.info(f'Outfield position failed: {e}') if row["key_bbref"] in df_of.index and len(of_arms) > 0 and len(of_payloads) > 0: try: error_rating = cde.get_any_error( pos_code=position, errors=int(df_of.at[row["key_bbref"], 'E_def']), chances=int(df_of.at[row["key_bbref"], 'chances']), season_pct=season_pct ) arm_rating = cde.arm_outfield(of_arms) for f in of_payloads: f['error'] = error_rating f['arm'] = arm_rating all_pos.append(f) no_data = False except Exception as e: logger.info(f'Outfield position failed: {e}') if row["key_bbref"] in df_c.index: try: run_rating = 'bis_runs_catcher_sb' if 'bis_runs_catcher_sb' in df_c else 'tz_runs_catcher' if df_c.at[row["key_bbref"], 'SB'] + df_c.at[row["key_bbref"], 'CS'] == 0: arm_rating = 3 else: arm_rating = cde.arm_catcher( cs_pct=df_c.at[row["key_bbref"], 'caught_stealing_perc'], raa=int(df_c.at[row["key_bbref"], run_rating]), season_pct=season_pct ) if float(df_c.at[row["key_bbref"], 'Inn_def']) >= 10.0: all_pos.append({ "key_bbref": row['key_bbref'], "position": 'C', "innings": float(df_c.at[row["key_bbref"], 'Inn_def']), "range": cde.range_catcher( rs_value=int(df_c.at[row["key_bbref"], 'tz_runs_catcher']), season_pct=season_pct ), "error": cde.get_any_error( pos_code='c', errors=int(df_c.at[row["key_bbref"], 'E_def']), chances=int(df_c.at[row["key_bbref"], 'chances']), season_pct=season_pct ), "arm": arm_rating, "pb": cde.pb_catcher( pb=int(df_c.at[row["key_bbref"], 'PB']), innings=int(float(df_c.at[row["key_bbref"], 'Inn_def'])), season_pct=season_pct ), "overthrow": cde.ot_catcher( errors=int(df_c.at[row["key_bbref"], 'E_def']), chances=int(df_c.at[row["key_bbref"], 'chances']), season_pct=season_pct ) }) no_data = False except Exception as e: logger.info(f'Catcher position failed: {e}') if no_data: all_pos.append({ "key_bbref": row['key_bbref'], "position": 'DH', "innings": row['PA_vL'] + row['PA_vR'] }) bs.apply(process_pos, axis=1) pos_df = pd.DataFrame(all_pos) pos_df = pos_df.set_index('key_bbref') return pos_df def calc_pitcher_defense(ps: pd.DataFrame) -> pd.DataFrame: df_p = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_p.csv').set_index('key_bbref') all_pos = [] def process_def(row): if 'bis_runs_total' in df_p: range_val = cde.range_pitcher(rs_value=int(df_p.at[row['key_bbref'], 'bis_runs_total'])) else: range_val = cde.range_pitcher(rf_per9_value=df_p.at[row['key_bbref'], 'range_factor_per_nine']) if row['key_bbref'] in df_p.index: all_pos.append({ 'key_bbref': row['key_bbref'], 'position': 'P', 'innings': float(df_p.at[row['key_bbref'], 'Inn_def']), 'range': range_val, 'error': cde.get_any_error( pos_code='p', errors=int(df_p.at[row["key_bbref"], 'E_def']), chances=int(df_p.at[row["key_bbref"], 'chances']), season_pct=1.0 ) }) else: all_pos.append({ "key_bbref": int(row['key_bbref']), "position": 'P', "innings": 1, "range": 5, "error": 51 }) ps.apply(process_def, axis=1) pos_df = pd.DataFrame(all_pos) pos_df = pos_df.set_index('key_bbref') return pos_df async def get_or_post_players(bstat_df: pd.DataFrame = None, bat_rat_df: pd.DataFrame = None, def_rat_df: pd.DataFrame = None, pstat_df: pd.DataFrame = None, pit_rat_df: pd.DataFrame = None) -> pd.DataFrame: all_players = [] player_deltas = [['player_id', 'player_name', 'old-cost', 'new-cost', 'old-rarity', 'new-rarity']] new_players = [['player_id', 'player_name', 'cost', 'rarity', 'pos1']] async def player_search(bbref_id: str): p_query = await db_get('players', params=[('bbref_id', bbref_id), ('cardset_id', CARDSET_ID)]) if p_query['count'] > 0: return p_query['players'][0] else: return None async def mlb_search_or_post(retro_id: int): mlb_query = await db_get('mlbplayers', params=[('key_retro', retro_id)]) if mlb_query['count'] > 0: return mlb_query['players'][0] else: mlb_player = await db_post( 'mlbplayers/one', payload={ 'first_name': row['use_name'], 'last_name': row['last_name'], 'key_mlbam': row['key_mlbam'], 'key_fangraphs': row['key_fangraphs'], 'key_bbref': row['key_bbref'], 'key_retro': row['key_retro'] } ) return mlb_player def new_player_payload(row, ratings_df: pd.DataFrame): return { 'p_name': f'{row["use_name"]} {row["last_name"]}', 'cost': f'{ratings_df.loc[row['key_bbref']]["cost"]}', 'image': f'change-me', 'mlbclub': CLUB_LIST[row['Tm']], 'franchise': FRANCHISE_LIST[row['Tm']], 'cardset_id': CARDSET_ID, 'set_num': int(float(row['key_fangraphs'])), 'rarity_id': int(ratings_df.loc[row['key_bbref']]['rarity_id']), 'description': PLAYER_DESCRIPTION, 'bbref_id': row['key_bbref'], 'fangr_id': int(float(row['key_fangraphs'])), 'mlbplayer_id': mlb_player['id'] } def get_player_record_pos(def_rat_df: pd.DataFrame, row) -> list[str]: all_pos = [None, None, None, None, None, None, None, None] try: count = 0 all_pos_df = def_rat_df.loc[row['key_bbref']].sort_values(by='innings', ascending=False) for index, pos_row in all_pos_df.iterrows(): all_pos[count] = pos_row.position count += 1 except KeyError: logger.info(f'No positions found for {row['use_name']} {row['last_name']}') all_pos[0] = 'DH' except TypeError: logger.info(f'Only one position found for {row['use_name']} {row['last_name']}') all_pos[0] = def_rat_df.loc[row['key_bbref']].position return all_pos dev_count = 0 if bstat_df is not None and bat_rat_df is not None and def_rat_df is not None: for index, row in bstat_df.iterrows(): if dev_count < 0: break p_search = await player_search(row['key_bbref']) if p_search is not None: if 'id' in p_search: player_id = p_search['id'] else: player_id = p_search['player_id'] # Update positions for existing players too all_pos = get_player_record_pos(def_rat_df, row) patch_params = [ ('cost', f'{bat_rat_df.loc[row['key_bbref']]["cost"]}'), ('rarity_id', int(bat_rat_df.loc[row['key_bbref']]['rarity_id'])), ('image', f'{CARD_BASE_URL}{player_id}/battingcard{urllib.parse.quote("?d=")}{RELEASE_DIRECTORY}') ] # Add position updates - set all 8 slots to clear any old positions for x in enumerate(all_pos): patch_params.append((f'pos_{x[0] + 1}', x[1])) new_player = await db_patch('players', object_id=player_id, params=patch_params) new_player['bbref_id'] = row['key_bbref'] all_players.append(new_player) player_deltas.append([ new_player['player_id'], new_player['p_name'], p_search['cost'], new_player['cost'], p_search['rarity']['name'], new_player['rarity']['name'] ]) else: mlb_player = await mlb_search_or_post(row['key_retro']) player_payload = new_player_payload(row, bat_rat_df) all_pos = get_player_record_pos(def_rat_df, row) for x in enumerate(all_pos): player_payload[f'pos_{x[0] + 1}'] = x[1] new_player = await db_post('players', payload=player_payload) if 'id' in new_player: player_id = new_player['id'] else: player_id = new_player['player_id'] new_player = await db_patch('players', object_id=player_id, params=[('image', f'{CARD_BASE_URL}{player_id}/battingcard{urllib.parse.quote("?d=")}{RELEASE_DIRECTORY}')]) if 'paperdex' in new_player: del new_player['paperdex'] # all_bbref_ids.append(row['key_bbref']) # all_player_ids.append(player_id) new_player['bbref_id'] = row['key_bbref'] all_players.append(new_player) new_players.append([new_player['player_id'], new_player['p_name'], new_player['cost'], new_player['rarity']['name'], new_player['pos_1']]) dev_count += 1 elif pstat_df is not None and pit_rat_df is not None and def_rat_df is not None: starter_index = pstat_df.columns.get_loc('starter_rating') closer_index = pstat_df.columns.get_loc('closer_rating') for index, row in pstat_df.iterrows(): if dev_count < 0: break p_search = await player_search(row['key_bbref']) if p_search is not None: if 'id' in p_search: player_id = p_search['id'] else: player_id = p_search['player_id'] # Determine pitcher positions based on ratings patch_params = [ ('cost', f'{pit_rat_df.loc[row['key_bbref']]["cost"]}'), ('rarity_id', int(pit_rat_df.loc[row['key_bbref']]['rarity_id'])), ('image', f'{CARD_BASE_URL}{player_id}/pitchingcard{urllib.parse.quote("?d=")}{RELEASE_DIRECTORY}') ] player_index = pstat_df.index[pstat_df['key_bbref'] == row['key_bbref']].tolist() stat_row = pstat_df.iloc[player_index] starter_rating = stat_row.iat[0, starter_index] if starter_rating >= 4: patch_params.append(('pos_1', 'SP')) # Clear other position slots for i in range(2, 9): patch_params.append((f'pos_{i}', None)) else: patch_params.append(('pos_1', 'RP')) closer_rating = stat_row.iat[0, closer_index] if not pd.isna(closer_rating): patch_params.append(('pos_2', 'CP')) # Clear remaining position slots for i in range(3, 9): patch_params.append((f'pos_{i}', None)) else: # Clear remaining position slots for i in range(2, 9): patch_params.append((f'pos_{i}', None)) new_player = await db_patch('players', object_id=player_id, params=patch_params) new_player['bbref_id'] = row['key_bbref'] all_players.append(new_player) player_deltas.append([ new_player['player_id'], new_player['p_name'], p_search['cost'], new_player['cost'], p_search['rarity']['name'], new_player['rarity']['name'] ]) else: mlb_player = await mlb_search_or_post(row['key_retro']) player_payload = new_player_payload(row, pit_rat_df) player_index = pstat_df.index[pstat_df['key_bbref'] == row['key_bbref']].tolist() stat_row = pstat_df.iloc[player_index] starter_rating = stat_row.iat[0, starter_index] if starter_rating >= 4: player_payload['pos_1'] = 'SP' else: player_payload['pos_1'] = 'RP' closer_rating = stat_row.iat[0, closer_index] if not pd.isna(closer_rating): player_payload['pos_2'] = 'CP' new_player = await db_post('players', payload=player_payload) if 'id' in new_player: player_id = new_player['id'] else: player_id = new_player['player_id'] new_player = await db_patch('players', object_id=player_id, params=[('image', f'{CARD_BASE_URL}{player_id}/pitchingcard{urllib.parse.quote("?d=")}{RELEASE_DIRECTORY}')]) if 'paperdex' in new_player: del new_player['paperdex'] new_player['bbref_id'] = row['key_bbref'] all_players.append(new_player) new_players.append([new_player['player_id'], new_player['p_name'], new_player['cost'], new_player['rarity']['name'], new_player['pos_1']]) dev_count += 1 else: raise KeyError(f'Could not get players - not enough stat DFs were supplied') pd.DataFrame(player_deltas[1:], columns=player_deltas[0]).to_csv(f'{"batter" if bstat_df is not None else "pitcher"}-deltas.csv') pd.DataFrame(new_players[1:], columns=new_players[0]).to_csv(f'new-{"batter" if bstat_df is not None else "pitcher"}s.csv') players_df = pd.DataFrame(all_players).set_index('bbref_id') return players_df async def post_batting_cards(cards_df: pd.DataFrame): all_cards = [] cards_df.apply(lambda x: all_cards.append({ 'player_id': int(x["player_id"]), 'steal_low': x['steal_low'], 'steal_high': x['steal_high'], 'steal_auto': x['steal_auto'], 'steal_jump': x['steal_jump'], 'bunting': x['bunt'], 'hit_and_run': x['hit_and_run'], 'running': x['running'], 'hand': x['hand'] }), axis=1) resp = await db_put('battingcards', payload={'cards': all_cards}, timeout=6) if resp is not None: pass else: log_exception(ValueError, 'Unable to post batting cards') bc_query = await db_get('battingcards', params=[('cardset_id', CARDSET_ID)]) if bc_query['count'] > 0: bc_data = bc_query['cards'] for line in bc_data: line['player_id'] = line['player']['player_id'] line['key_bbref'] = line['player']['bbref_id'] line['battingcard_id'] = line['id'] return pd.DataFrame(bc_data) else: log_exception(ValueError, 'Unable to pull newly posted batting cards') async def post_pitching_cards(cards_df: pd.DataFrame): all_cards = [] def get_closer_rating(raw_rating): try: if pd.isnull(raw_rating): return None else: return raw_rating except AttributeError: return None cards_df.apply(lambda x: all_cards.append({ 'player_id': int(x['player_id']), 'balk': x['balk'], 'wild_pitch': x['wild_pitch'], 'hold': x['hold'], 'starter_rating': x['starter_rating'], 'relief_rating': x['relief_rating'], 'closer_rating': get_closer_rating(x['closer_rating']), 'batting': x['batting'], 'hand': x['pitch_hand'].upper() }), axis=1) resp = await db_put('pitchingcards', payload={'cards': all_cards}, timeout=6) if resp is not None: pass else: log_exception(ValueError, 'Unable to post pitcher cards') pc_query = await db_get('pitchingcards', params=[('cardset_id', CARDSET_ID)]) if pc_query['count'] > 0: pc_data = pc_query['cards'] if PLAYER_DESCRIPTION.lower() not in ['live', '1998']: pc_data = [x for x in pc_query['cards'] if x['player']['mlbplayer']['key_retro'] in PROMO_INCLUSION_RETRO_IDS] for line in pc_data: line['player_id'] = line['player']['player_id'] line['key_bbref'] = line['player']['bbref_id'] line['pitchingcard_id'] = line['id'] return pd.DataFrame(pc_data) else: log_exception(ValueError, 'Unable to pull newly posted pitcher cards') async def post_batting_ratings(ratings_df: pd.DataFrame): all_ratings = [] def append_ratings(row): vl = row['ratings_vL'] vl['player_id'] = row['player_id'] vl['battingcard_id'] = row['battingcard_id'] vr = row['ratings_vR'] vr['player_id'] = row['player_id'] vr['battingcard_id'] = row['battingcard_id'] all_ratings.append(vl) all_ratings.append(vr) ratings_df.apply(append_ratings, axis=1) resp = await db_put('battingcardratings', payload={'ratings': all_ratings}, timeout=6) if resp is not None: return True else: log_exception(ValueError, 'Unable to post batting ratings') async def post_pitching_ratings(ratings_df: pd.DataFrame): all_ratings = [] def append_ratings(row): vl = row['ratings_vL'] vl['player_id'] = row['player_id'] vl['pitchingcard_id'] = row['pitchingcard_id'] vr = row['ratings_vR'] vr['player_id'] = row['player_id'] vr['pitchingcard_id'] = row['pitchingcard_id'] all_ratings.append(vl) all_ratings.append(vr) ratings_df.apply(append_ratings, axis=1) resp = await db_put('pitchingcardratings', payload={'ratings': all_ratings}, timeout=6) if resp is not None: return True else: log_exception(ValueError, 'Unable to post pitching ratings') async def post_positions(pos_df: pd.DataFrame, delete_existing: bool = False): # Delete existing cardpositions ONLY for players in this run to avoid stale data # (e.g., DH positions from buggy runs where outfielders had no defensive positions) # Only delete on the first call (batters), not the second call (pitchers) if delete_existing: player_ids = pos_df['player_id'].unique().tolist() logger.info(f'Deleting existing cardpositions for {len(player_ids)} players in current run') existing_positions = await db_get('cardpositions', params=[('cardset_id', CARDSET_ID)]) if existing_positions and existing_positions.get('count', 0) > 0: deleted_count = 0 for pos in existing_positions['positions']: # Only delete positions for players being processed in this run if pos['player']['player_id'] in player_ids: try: await db_delete('cardpositions', object_id=pos['id'], timeout=1) deleted_count += 1 except Exception as e: logger.warning(f'Failed to delete cardposition {pos["id"]}: {e}') logger.info(f'Deleted {deleted_count} positions for players in current run') all_pos = [] def append_positions(row): clean_row = row.dropna() new_val = clean_row.to_dict() new_val['player_id'] = int(row['player_id']) all_pos.append(new_val) pos_df.apply(append_positions, axis=1) resp = await db_put('cardpositions', payload={'positions': all_pos}, timeout=6) if resp is not None: return True else: log_exception(ValueError, 'Unable to post positions') async def post_batter_data(bs: pd.DataFrame, bc: pd.DataFrame, br: pd.DataFrame, dr: pd.DataFrame) -> int: all_players = await get_or_post_players(bstat_df=bs, bat_rat_df=br, def_rat_df=dr) # Post Batting Cards bc = pd.merge( left=bc, right=all_players, how='left', left_on='key_bbref', right_on='bbref_id' ) bc = await post_batting_cards(bc) # Post Batting Ratings # Only merge the columns we need to avoid corrupting dict columns in br br = pd.merge( left=br, right=bc[['key_bbref', 'player_id', 'battingcard_id']], how='left', left_on='key_bbref', right_on='key_bbref' ) br = await post_batting_ratings(br) # Post Positions dr = pd.merge( left=dr, right=all_players, how='right', # 'left', left_on='key_bbref', right_on='bbref_id' ) await post_positions(dr, delete_existing=True) # Delete on first call (batters) return len(all_players) async def post_pitcher_data(ps: pd.DataFrame, pc: pd.DataFrame, pr: pd.DataFrame, dr: pd.DataFrame) -> int: all_players = await get_or_post_players(pstat_df=ps, pit_rat_df=pr, def_rat_df=dr) ps = pd.merge( left=all_players, right=ps, how='left', left_on='bbref_id', right_on='key_bbref' ) # Post Pitching Cards pc = await post_pitching_cards(ps) # Post Pitching Ratings # Only merge the columns we need to avoid corrupting dict columns in pr pr = pd.merge( left=pr, right=pc[['key_bbref', 'player_id', 'pitchingcard_id']], how='left', left_on='key_bbref', right_on='key_bbref' ) pr = await post_pitching_ratings(pr) # Post Positions dr = pd.merge( left=all_players, right=dr, how='left', left_on='bbref_id', right_on='key_bbref' ) await post_positions(dr, delete_existing=False) # Don't delete on second call (pitchers) return len(all_players) async def run_batters(data_input_path: str, start_date: int, end_date: int, post_data: bool = False, season_pct: float = 1.0): print(f'Running the batter calcs...') # batter_start = datetime.datetime.now() # Get batting stats batting_stats = get_batting_stats_by_date(f'{RETRO_FILE_PATH}{EVENTS_FILENAME}', start_date=start_date, end_date=end_date) bs_len = len(batting_stats) # end_calc = datetime.datetime.now() # print(f'Combined batting stats: {(end_calc - batter_start).total_seconds():.2f}s\n') running_start = datetime.datetime.now() # Get running stats running_stats = get_run_stat_df(data_input_path) batting_stats = pd.merge( left=batting_stats, right=running_stats, how='left', left_on='key_bbref', right_on='key_bbref' ) # Handle players who played for multiple teams - keep only highest-level combined totals # Players traded during season have multiple rows: one per team + one combined (2TM, 3TM, etc.) # Prefer: 3TM > 2TM > TOT > individual teams duplicated_mask = batting_stats['key_bbref'].duplicated(keep=False) if duplicated_mask.any(): # Sort by Tm (descending) to prioritize higher-numbered combined totals (3TM > 2TM) # Then drop duplicates, keeping only the first (highest priority) row per player batting_stats = batting_stats.sort_values('Tm', ascending=False) batting_stats = batting_stats.drop_duplicates(subset='key_bbref', keep='first') logger.info("Removed team-specific rows for traded batters") bs_len = len(batting_stats) # Update length after removing duplicates end_calc = datetime.datetime.now() print(f'Running stats: {(end_calc - running_start).total_seconds():.2f}s') if len(batting_stats) != bs_len: raise DataMismatchError(f'retrosheet_data - run_batters - We started with {bs_len} batting lines and have {len(batting_stats)} after merging with running_stats') # Calculate batting cards card_start = datetime.datetime.now() all_batting_cards = calc_batting_cards(batting_stats, season_pct) card_end = datetime.datetime.now() print(f'Create batting cards: {(card_end - card_start).total_seconds():.2f}s') # Calculate batting ratings rating_start = datetime.datetime.now() batting_stats['battingcard_id'] = batting_stats['key_fangraphs'] all_batting_ratings = calc_batter_ratings(batting_stats) rating_end = datetime.datetime.now() print(f'Create batting ratings: {(rating_end - rating_start).total_seconds():.2f}s') # Calculate defense ratings defense_start = datetime.datetime.now() all_defense_ratings = calc_positions(batting_stats) defense_end = datetime.datetime.now() print(f'Create defense ratings: {(defense_end - defense_start).total_seconds():.2f}s') # Post all data if post_data: print(f'Posting player data...') post_start = datetime.datetime.now() num_players = await post_batter_data(batting_stats, all_batting_cards, all_batting_ratings, all_defense_ratings) post_end = datetime.datetime.now() print(f'Post player data: {(post_end - post_start).total_seconds()}s') post_msg = f'Posted {num_players} players to the database' logger.info(post_msg) print(post_msg) else: post_msg = f'{batting_stats.index.size} total batters\n\nPlayers are NOT being posted to the database' logger.warning(post_msg) print(post_msg) return batting_stats async def run_pitchers(data_input_path: str, start_date: int, end_date: int, post_data: bool = False, season_pct: float = 1.0): # Get pitching stats pitching_stats = get_pitching_stats_by_date(f'{RETRO_FILE_PATH}{EVENTS_FILENAME}', start_date=start_date, end_date=end_date) # Get peripheral stats start_time = datetime.datetime.now() periph_stats = get_periph_stat_df(data_input_path) pitching_stats = pd.merge( left=pitching_stats, right=periph_stats, how='left', left_on='key_bbref', right_on='key_bbref' ) # Handle players who played for multiple teams - keep only highest-level combined totals # Players traded during season have multiple rows: one per team + one combined (2TM, 3TM, etc.) # Prefer: 3TM > 2TM > TOT > individual teams duplicated_mask = pitching_stats['key_bbref'].duplicated(keep=False) if duplicated_mask.any(): # Sort by Tm (descending) to prioritize higher-numbered combined totals (3TM > 2TM) # Then drop duplicates, keeping only the first (highest priority) row per player pitching_stats = pitching_stats.sort_values('Tm', ascending=False) pitching_stats = pitching_stats.drop_duplicates(subset='key_bbref', keep='first') logger.info(f"Removed team-specific rows for traded players") end_time = datetime.datetime.now() print(f'Peripheral stats: {(end_time - start_time).total_seconds():.2f}s') # Calculate defense ratings start_time = datetime.datetime.now() df_p = pd.read_csv(f'{DATA_INPUT_FILE_PATH}defense_p.csv').set_index('key_bbref') # Drop 'Tm' from defense data to avoid column name conflicts (we already have it from periph_stats) if 'Tm' in df_p.columns: df_p = df_p.drop(columns=['Tm']) pitching_stats = pd.merge( left=pitching_stats, right=df_p, how='left', left_on='key_bbref', right_on='key_bbref' ) pitching_stats = pitching_stats.fillna(0) all_defense_ratings = calc_pitcher_defense(pitching_stats) end_time = datetime.datetime.now() print(f'Defense stats: {(end_time - start_time).total_seconds():.2f}s') # Calculate pitching cards start_time = datetime.datetime.now() all_pitching_cards = calc_pitching_cards(pitching_stats, season_pct) pitching_stats = pd.merge( left=pitching_stats, right=all_pitching_cards, how='left', left_on='key_bbref', right_on='key_bbref' ) end_time = datetime.datetime.now() print(f'Pit cards: {(end_time - start_time).total_seconds():.2f}s') # Calculate pitching card ratings start_time = datetime.datetime.now() all_pitching_ratings = calc_pitcher_ratings(pitching_stats) end_time = datetime.datetime.now() print(f'Pit ratings: {(end_time - start_time).total_seconds():.2f}s') # Post all data if post_data: print(f'\nPosting player data...') post_start = datetime.datetime.now() num_players = await post_pitcher_data(pitching_stats, all_pitching_cards, all_pitching_ratings, all_defense_ratings) post_end = datetime.datetime.now() print(f'Post player data: {(post_end - post_start).total_seconds()}s') post_msg = f'\nPosted {num_players} pitchers to the database' logger.info(post_msg) print(post_msg) else: post_msg = f'{pitching_stats.index.size} total pitchers\n\nPlayers are NOT being posted to the database' logger.warning(post_msg) print(post_msg) return pitching_stats async def main(args): if len(PROMO_INCLUSION_RETRO_IDS) > 0 and PLAYER_DESCRIPTION == 'Live': msg = f'Player description is set to *Live*, but there are {len(PROMO_INCLUSION_RETRO_IDS)} IDs in the promo inclusion list. Clear the promo list or change the player description.' log_exception(ValueError, msg=msg, level='error') # Temporarily commented out for Ryan Zimmerman full season run # if weeks_between(START_DATE, END_DATE) > 5 and len(PROMO_INCLUSION_RETRO_IDS) > 0: # msg = f'More than 5 weeks are included for a promo cardset. Please adjust START_DATE and/or END_DATE.' # log_exception(ValueError, msg=msg, level='error') batter_start = datetime.datetime.now() batting_stats = await run_batters(f'{DATA_INPUT_FILE_PATH}', start_date=START_DATE, end_date=END_DATE, post_data=POST_DATA, season_pct=SEASON_PCT) batting_stats.to_csv(f'batting_stats.csv') batter_end = datetime.datetime.now() print(f'\nBatter time: {(batter_end - batter_start).total_seconds():.2f}s\n') pitcher_start = datetime.datetime.now() pitching_stats = await run_pitchers(f'{DATA_INPUT_FILE_PATH}', start_date=START_DATE, end_date=END_DATE, post_data=POST_DATA, season_pct=SEASON_PCT) pitching_stats.to_csv(f'pitching_stats.csv') pitcher_end = datetime.datetime.now() print(f'\nPitcher time: {(pitcher_end - pitcher_start).total_seconds():.2f}s') print(f'Total: {(pitcher_end - batter_start).total_seconds():.2f}s\n\nDone!') # await store_defense_to_csv(1998) if __name__ == '__main__': asyncio.run(main(sys.argv[1:]))