Scouting complete :)

This commit is contained in:
Cal Corum 2025-02-09 07:57:02 -06:00
parent 71b2fdbeba
commit 8939b8bd71
2 changed files with 166 additions and 16 deletions

View File

@ -173,7 +173,6 @@ async def post_calc_basic(batting_dfs: pd.DataFrame):
return speed_raw
start_time = log_time('start', 'Beginning Speed calcs')
overall_start_time = start_time
raw_series = batting_dfs.apply(get_raw_speed, axis=1)
rank_series = raw_series.rank(pct=True)
@ -385,7 +384,6 @@ async def post_calc_basic(batting_dfs: pd.DataFrame):
async def post_calc_ratings(batting_dfs: pd.DataFrame):
start_time = log_time('start', 'Beginning Ratings filtering')
overall_start_time = start_time
output = batting_dfs
first = ['player_id', 'player_name', 'cardset_name', 'rarity', 'hand', 'variant']

View File

@ -12,12 +12,6 @@ from typing import Literal
import pandas as pd
async def get_scouting_dfs(cardset_id: list = None):
# all_ratings = PitchingCardRatings.select()
# if cardset_id is not None:
# set_players = Player.select(Player.player_id).where(Player.cardset_id << cardset_id)
# set_cards = PitchingCard.select(PitchingCard.id).where(PitchingCard.player << set_players)
# all_ratings = all_ratings.where(PitchingCardRatings.pitchingcard << set_cards)
cardset_params = [('cardset_id', x) for x in cardset_id]
ratings_params = [('team_id', 31), ('ts', 's37136685556r6135248705'), *cardset_params]
API_CALLS = [
@ -26,9 +20,6 @@ async def get_scouting_dfs(cardset_id: list = None):
('cardpositions', [('position', 'P'), *cardset_params])
]
# vl_query = all_ratings.where(PitchingCardRatings.vs_hand == 'L')
# vr_query = all_ratings.where(PitchingCardRatings.vs_hand == 'R')
start_time = log_time('start', message='Pulling all pitching card ratings and positions')
tasks = [fetch_data(params) for params in API_CALLS]
@ -63,11 +54,6 @@ async def get_scouting_dfs(cardset_id: list = None):
log_time('end', f'Base dataframes are complete', start_time=start_time)
start_time = log_time('start', message='Building defense series')
# positions = CardPosition.select().where(CardPosition.position == 'P')
# if cardset_id is not None:
# set_players = Player.select(Player.player_id).where(Player.cardset_id << cardset_id)
# positions = positions.where(CardPosition.player << set_players)
positions = api_data[2]['positions']
series_list = [pd.Series(
@ -82,6 +68,172 @@ async def get_scouting_dfs(cardset_id: list = None):
return pit_df.join(series_list)
async def post_calc_basic(pitching_dfs: pd.DataFrame):
raw_data = pitching_dfs
def get_raw_leftcontrol(df_data):
return ((1 - (df_data['obp_vl'] - df_data['avg_vl'])) * 100) + (1 - (df_data['wild_pitch'] / 20))
start_time = log_time('start', 'Beginning Control L calcs')
raw_series = raw_data.apply(get_raw_leftcontrol, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['Control L'] = round(rank_series * 100)
log_time('end', 'Done Control L calcs', start_time=start_time)
start_time = log_time('start', 'Beginning Control R calcs')
def get_raw_rightcontrol(df_data):
return ((1 - (df_data['obp_vr'] - df_data['avg_vr'])) * 100) + (1 - (df_data['wild_pitch'] / 20))
raw_series = raw_data.apply(get_raw_rightcontrol, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['Control R'] = round(rank_series * 100)
log_time('end', 'Done Control R calcs', start_time=start_time)
start_time = log_time('start', 'Beginning Stuff L calcs')
def get_raw_leftstuff(df_data):
return 10 - (df_data['slg_vl'] + df_data['slg_vl'] + ((df_data['homerun_vl'] + df_data['bp_homerun_vl']) / 108))
raw_series = raw_data.apply(get_raw_leftstuff, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['Stuff L'] = round(rank_series * 100)
log_time('end', 'Done Stuff L calcs', start_time=start_time)
start_time = log_time('start', 'Beginning Stuff R calcs')
def get_raw_rightstuff(df_data):
return 10 - (df_data['slg_vr'] + df_data['slg_vr'] + ((df_data['homerun_vr'] + df_data['bp_homerun_vr']) / 108))
raw_series = raw_data.apply(get_raw_rightstuff, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['Stuff R'] = round(rank_series * 100)
log_time('end', 'Done Stuff R calcs', start_time=start_time)
start_time = log_time('start', 'Beginning Fielding calcs')
def get_raw_fielding(df_data):
return ((6 - df_data['Range P']) * 10) + (50 - df_data['Error P'])
raw_series = raw_data.apply(get_raw_fielding, axis=1)
rank_series = raw_series.rank(pct=True)
logger.info(f'max fld: {raw_series.max()} / min fld: {raw_series.min()}')
raw_data['Fielding'] = round(rank_series * 100)
log_time('end', 'Done Fielding calcs', start_time=start_time)
start_time = log_time('start', 'Beginning Stamina calcs')
def get_raw_stamina(df_data):
spow = df_data['starter_rating'] if pd.isna(df_data['starter_rating']) else -1
rpow = df_data['relief_rating'] if pd.isna(df_data['relief_rating']) else -1
this_pow = spow if spow > rpow else rpow
return (((this_pow * (df_data['obp_vr'] * (2 / 3))) + (this_pow * (df_data['obp_vl'] / 3))) * 4.5) + this_pow
raw_series = raw_data.apply(get_raw_stamina, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['Stamina'] = round(rank_series * 100)
log_time('end', 'Done Stamina calcs', start_time=start_time)
start_time = log_time('start', 'Beginning H/9 calcs')
def get_raw_hit(df_data):
return 1 - (df_data['avg_vr'] * (2 / 3)) + (df_data['avg_vl'] / 3)
raw_series = raw_data.apply(get_raw_hit, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['H/9'] = round(rank_series * 100)
log_time('end', 'Done H/9 calcs', start_time=start_time)
start_time = log_time('start', 'Beginning H/9 calcs')
def get_raw_k(df_data):
return ((df_data['strikeout_vr'] / 108) * (2 / 3)) + ((df_data['strikeout_vl'] / 108) / 3)
raw_series = raw_data.apply(get_raw_k, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['K/9'] = round(rank_series * 100)
log_time('end', 'Done H/9 calcs', start_time=start_time)
start_time = log_time('start', 'Beginning BB/9 calcs')
def get_raw_bb(df_data):
return ((df_data['walk_vr'] / 108) * (2 / 3)) + ((df_data['walk_vl'] / 108) / 3)
raw_series = raw_data.apply(get_raw_bb, axis=1)
rank_series = raw_series.rank(pct=True, ascending=False)
raw_data['BB/9'] = round(rank_series * 100)
log_time('end', 'Done BB/9 calcs', start_time=start_time)
start_time = log_time('start', 'Beginning BB/9 calcs')
def get_raw_hr(df_data):
return 1 - (
(((df_data['homerun_vr'] + df_data['bp_homerun_vr']) / 108) * (2 / 3)) +
(((df_data['homerun_vl'] + df_data['bp_homerun_vl']) / 108) / 3))
raw_series = raw_data.apply(get_raw_hr, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['HR/9'] = round(rank_series * 100)
log_time('end', 'Done HR/9 calcs', start_time=start_time)
start_time = log_time('start', 'Beginning Rating calcs')
def get_raw_rating(df_data):
spow = df_data['starter_rating'] if pd.isna(df_data['starter_rating']) else -1
rpow = df_data['relief_rating'] if pd.isna(df_data['relief_rating']) else -1
if spow > rpow and spow >= 4:
return (
((df_data['H/9'] + df_data['K/9'] + df_data['BB/9'] + df_data['HR/9']) * 5) +
(df_data['Fielding']) + (df_data['Stamina'] * 5) +
(((df_data['Stuff L'] / 3) + (df_data['Stuff R'] * (2 / 3))) * 4) +
(((df_data['Control L'] / 3) + (df_data['Control R'] * (2 / 3))) * 2)
)
else:
return (
((df_data['H/9'] + df_data['K/9'] + df_data['BB/9'] + df_data['HR/9']) * 5) +
(df_data['Fielding']) + (df_data['Stamina'] * 5) +
(((df_data['Stuff L'] / 3) + (df_data['Stuff R'] * (2 / 3))) * 4) +
(((df_data['Control L'] / 3) + (df_data['Control R'] * (2 / 3))) * 2)
)
raw_series = raw_data.apply(get_raw_rating, axis=1)
rank_series = raw_series.rank(pct=True)
raw_data['Rating'] = round(rank_series * 100)
output = raw_data[[
'player_id', 'player_name', 'Rating', 'Control R', 'Control L', 'Stuff R', 'Stuff L', 'Stamina', 'Fielding',
'H/9', 'K/9', 'BB/9', 'HR/9', 'hand', 'cardset_name'
]]
log_time('end', 'Done Rating calcs', start_time=start_time)
start_time = log_time('start', 'Beginning write csv')
csv_file = pd.DataFrame(output).to_csv(index=False)
with open('scouting/pitching-basic.csv', 'w') as file:
file.write(csv_file)
log_time('end', 'Done writing to file', start_time=start_time)
async def post_calc_ratings(pitching_dfs: pd.DataFrame):
start_time = log_time('start', 'Beginning Ratings filtering')
output = pitching_dfs
first = ['player_id', 'player_name', 'cardset_name', 'rarity', 'hand', 'variant']
exclude = first + ['id_vl', 'id_vr', 'vs_hand_vl', 'vs_hand_vr']
output = output[first + [col for col in output.columns if col not in exclude]]
log_time('end', 'Done filtering ratings', start_time=start_time)
start_time = log_time('start', 'Beginning write to file')
csv_file = pd.DataFrame(output).to_csv(index=False)
with open('scouting/pitching-ratings', 'w') as file:
file.write(csv_file)
log_time('end', 'Done writing to file', start_time=start_time)
async def main():
start_time = log_time('start', 'Pulling scouting data')
overall_start_time = start_time