Phase 1 of creation complete

This commit is contained in:
Cal Corum 2023-09-22 01:29:51 -05:00
parent 7b9fe9df8d
commit 443eaa3a41
4 changed files with 558 additions and 257 deletions

View File

@ -1,43 +1,53 @@
import decimal
import logging
import math
import pydantic
from creation_helpers import mround
from typing import Literal
from typing import List, Literal
from decimal import Decimal
class BattingCardRatingsModel(pydantic.BaseModel):
vs_hand: Literal['R', 'L', 'vR', 'vL']
all_hits: float = 0.0
other_ob: float = 0.0
all_outs: float = 0.0
all_singles: float = 0.0
all_xbh: float = 0.0
all_hr: float = 0.0
all_doubles: float = 0.0
homerun: float = 0.0
bp_homerun: float = 0.0
triple: float = 0.0
double_three: float = 0.0
double_two: float = 0.0
double_pull: float = 0.0
single_two: float = 0.0
single_one: float = 0.0
single_center: float = 0.0
bp_single: float = 0.0
hbp: float = 0.0
walk: float = 0.0
strikeout: float = 0.0
lineout: float = 0.0
popout: float = 0.0
flyout_a: float = 0.0
flyout_bq: float = 0.0
flyout_lf_b: float = 0.0
flyout_rf_b: float = 0.0
groundout_a: float = 0.0
groundout_b: float = 0.0
groundout_c: float = 0.0
avg: float = 0.0
obp: float = 0.0
slg: float = 0.0
battingcard_id: int
vs_hand: Literal['R', 'L']
all_hits: Decimal = Decimal(0.0)
other_ob: Decimal = Decimal(0.0)
all_outs: Decimal = Decimal(0.0)
rem_singles: Decimal = Decimal(0.0)
rem_xbh: Decimal = Decimal(0.0)
rem_hr: Decimal = Decimal(0.0)
rem_doubles: Decimal = Decimal(0.0)
hard_rate: Decimal
med_rate: Decimal
soft_rate: Decimal
homerun: Decimal = Decimal(0.0)
bp_homerun: Decimal = Decimal(0.0)
triple: Decimal = Decimal(0.0)
double_three: Decimal = Decimal(0.0)
double_two: Decimal = Decimal(0.0)
double_pull: Decimal = Decimal(0.0)
single_two: Decimal = Decimal(0.0)
single_one: Decimal = Decimal(0.0)
single_center: Decimal = Decimal(0.0)
bp_single: Decimal = Decimal(0.0)
hbp: Decimal = Decimal(0.0)
walk: Decimal = Decimal(0.0)
strikeout: Decimal = Decimal(0.0)
lineout: Decimal = Decimal(0.0)
popout: Decimal = Decimal(0.0)
rem_flyballs: Decimal = Decimal(0.0)
flyout_a: Decimal = Decimal(0.0)
flyout_bq: Decimal = Decimal(0.0)
flyout_lf_b: Decimal = Decimal(0.0)
flyout_rf_b: Decimal = Decimal(0.0)
rem_groundballs: Decimal = Decimal(0.0)
groundout_a: Decimal = Decimal(0.0)
groundout_b: Decimal = Decimal(0.0)
groundout_c: Decimal = Decimal(0.0)
avg: Decimal = 0.0
obp: Decimal = 0.0
slg: Decimal = 0.0
def total_chances(self):
return sum([
@ -64,39 +74,91 @@ class BattingCardRatingsModel(pydantic.BaseModel):
def rem_other_ob(self):
return self.other_ob - self.hbp - self.walk
def calculate_singles(self, szn_singles, szn_hits, ifh_rate: Decimal):
tot = sanitize_chance_output(self.all_hits * Decimal((szn_singles * .8) / szn_hits))
logging.debug(f'tot: {tot}')
self.rem_singles = tot
def total_chances(chance_data):
sum_chances = 0
for key in chance_data:
if key not in ['id', 'player_id', 'cardset_id', 'vs_hand', 'is_prep']:
sum_chances += chance_data[key]
self.bp_single = bp_singles(self.rem_singles)
self.rem_singles -= self.bp_single
return mround(sum_chances)
self.single_two = wh_singles(self.rem_singles, self.hard_rate)
self.rem_singles -= self.single_two
self.single_one = one_singles(self.rem_singles, ifh_rate)
self.rem_singles -= self.single_one
self.single_center = sanitize_chance_output(self.rem_singles)
self.rem_singles -= self.single_center
self.rem_xbh = self.all_hits - self.bp_single - self.single_two - self.single_one - self.single_center
def calculate_xbh(self, szn_triples, szn_doubles, szn_hr, hr_per_fb: Decimal):
self.triple = triples(self.rem_xbh, szn_triples, szn_doubles + szn_hr)
self.rem_xbh -= self.triple
tot_doubles = sanitize_chance_output(self.rem_xbh * Decimal(szn_doubles / max(szn_hr + szn_doubles, 1)))
self.double_two = two_doubles(tot_doubles, self.soft_rate)
self.double_pull = sanitize_chance_output(tot_doubles - self.double_two)
self.rem_xbh -= Decimal(self.double_two + self.double_pull)
if self.rem_xbh > Decimal(0):
self.bp_homerun = bp_homeruns(self.rem_xbh, hr_per_fb)
self.homerun = sanitize_chance_output(self.rem_xbh - self.bp_homerun, min_chances=0.5)
self.rem_xbh -= Decimal(self.bp_homerun + self.homerun)
if szn_triples > 0 and self.rem_xbh > 0:
self.triple = sanitize_chance_output(self.rem_xbh, min_chances=0.5)
if self.rem_xbh > 0:
logging.error(f'Adding {self.rem_xbh} results to all outs')
print(self)
self.all_outs += self.rem_xbh
# def total_chances(chance_data):
# sum_chances = 0
# for key in chance_data:
# if key not in ['id', 'player_id', 'cardset_id', 'vs_hand', 'is_prep']:
# sum_chances += chance_data[key]
#
# return mround(sum_chances)
def sanitize_chance_output(total_chances, min_chances=1.0, rounding=0.05):
# r_val = mround(total_chances) if total_chances >= min_chances else 0
r_val = Decimal(total_chances) if total_chances >= min_chances else Decimal(0)
logging.debug(f'r_val: {r_val}')
return Decimal(float(round(total_chances / Decimal(rounding)) * Decimal(rounding))).quantize(Decimal("0.05"))
# return r_val.quantize(Decimal(rounding))
def total_singles(all_hits, szn_singles, szn_hits):
return sanitize_chance_output(all_hits * ((szn_singles * .8) / szn_hits))
def bp_singles(all_singles):
if all_singles < 6:
return 0
return Decimal(0)
else:
return 5
return Decimal(5)
def wh_singles(rem_singles, hard_rate):
if rem_singles == 0 or hard_rate < .2:
return 0
elif hard_rate > .4:
return mround(rem_singles * .666)
return sanitize_chance_output(rem_singles * Decimal(.666), min_chances=2)
else:
return mround(rem_singles * .333)
return sanitize_chance_output(rem_singles * Decimal(.333), min_chances=2)
def one_singles(rem_singles, ifh_rate, force_rem):
def one_singles(rem_singles, ifh_rate, force_rem=False):
if force_rem:
return mround(rem_singles)
elif rem_singles == 0 or ifh_rate < .05:
return 0
return Decimal(0)
else:
return mround(rem_singles * ifh_rate * 3)
return sanitize_chance_output(rem_singles * ifh_rate * Decimal(3), min_chances=2)
def all_homeruns(rem_hits, all_hits, hrs, hits, singles):
@ -108,27 +170,36 @@ def all_homeruns(rem_hits, all_hits, hrs, hits, singles):
def nd_homeruns(all_hr, hr_rate):
if all_hr == 0 or hr_rate == 0:
return 0
return Decimal(0)
elif hr_rate > .2:
return mround(all_hr * .6)
return sanitize_chance_output(all_hr * .6)
else:
return mround(all_hr * .25)
return sanitize_chance_output(all_hr * .25)
def bp_homeruns(all_hr, hr_rate):
if all_hr == 0 or hr_rate == 0:
return Decimal(0)
elif hr_rate > .2:
return sanitize_chance_output(all_hr * Decimal(.4), rounding=1.0)
else:
return sanitize_chance_output(all_hr * Decimal(.75), rounding=1.0)
def triples(all_xbh, tr_count, do_count):
if all_xbh == 0 or tr_count == 0:
return 0
if all_xbh == Decimal(0) or tr_count == Decimal(0):
return Decimal(0)
else:
return mround(all_xbh * (tr_count / (tr_count + do_count)))
return sanitize_chance_output(all_xbh * Decimal(tr_count / (tr_count + do_count)), min_chances=1)
def two_doubles(all_doubles, soft_rate):
if all_doubles == 0 or soft_rate == 0:
return 0
return Decimal(0)
elif soft_rate > .2:
return mround(all_doubles / 2)
return sanitize_chance_output(all_doubles / 2)
else:
return mround(all_doubles / 4)
return sanitize_chance_output(all_doubles / 4)
def hit_by_pitch(other_ob, hbps, walks):
@ -336,3 +407,47 @@ def hit_and_run(ab_vl: int, ab_vr: int, hits_vl: int, hits_vr: int, hr_vl: int,
return 'C'
else:
return 'D'
def get_batter_ratings(df_data) -> List[BattingCardRatingsModel]:
offense_mod = 1.2
vl = BattingCardRatingsModel(
battingcard_id=df_data.key_fangraphs,
vs_hand='L',
all_hits=mround(108 * offense_mod * df_data['AVG_vL']),
other_ob=mround(108 * offense_mod * ((df_data['BB_vL'] + df_data['HBP_vL']) / df_data['PA_vL'])),
hard_rate=df_data['Hard%_vL'],
med_rate=df_data['Med%_vL'],
soft_rate=df_data['Soft%_vL']
)
vr = BattingCardRatingsModel(
battingcard_id=df_data.key_fangraphs,
vs_hand='R',
all_hits=mround(108 * offense_mod * df_data['AVG_vR']),
other_ob=mround(108 * offense_mod * ((df_data['BB_vR'] + df_data['HBP_vR']) / df_data['PA_vR'])),
hard_rate=df_data['Hard%_vR'],
med_rate=df_data['Med%_vR'],
soft_rate=df_data['Soft%_vR']
)
vl.all_outs = Decimal(108 - vl.all_hits - vl.other_ob).quantize(Decimal("0.05"))
vr.all_outs = Decimal(108 - vr.all_hits - vr.other_ob).quantize(Decimal("0.05"))
vl.calculate_singles(df_data['1B_vL'], df_data['H_vL'], Decimal(df_data['IFH%_vL']))
vr.calculate_singles(df_data['1B_vR'], df_data['H_vR'], Decimal(df_data['IFH%_vR']))
logging.debug(
f'vL - All Hits: {vl.all_hits} / Other OB: {vl.other_ob} / All Outs: {vl.all_outs} '
f'/ Total: {vl.all_hits + vl.other_ob + vl.all_outs}'
)
logging.debug(
f'vR - All Hits: {vr.all_hits} / Other OB: {vr.other_ob} / All Outs: {vr.all_outs} '
f'/ Total: {vr.all_hits + vr.other_ob + vr.all_outs}'
)
vl.calculate_xbh(df_data['3B_vL'], df_data['2B_vL'], df_data['HR_vL'], df_data['HR/FB_vL'])
vr.calculate_xbh(df_data['3B_vR'], df_data['2B_vR'], df_data['HR_vR'], df_data['HR/FB_vR'])
logging.info(f'all_hits: {vl.all_hits} / sum of hits: {Decimal(vl.bp_single + vl.single_one + vl.single_two + vl.single_center + vl.double_two + vl.double_pull + vl.double_three + vl.triple + vl.homerun + vl.bp_homerun)}')
logging.info(f'all_hits: {vr.all_hits} / sum of hits: {Decimal(vr.bp_single + vr.single_one + vr.single_two + vr.single_center + vr.double_two + vr.double_pull + vr.double_three + vr.triple + vr.homerun + vr.bp_homerun)}')
return [vl, vr]

View File

@ -1,4 +1,9 @@
import math
import logging
import pandas as pd
import requests
from bs4 import BeautifulSoup
from typing import Literal
def range_pitcher(rs_value: int, season_pct: float):
@ -27,62 +32,76 @@ def range_catcher(rs_value: int, season_pct: float):
return 5
def range_first_base(drs: int, r_dp: int, season_pct: float):
if (drs + r_dp) >= (4 * season_pct):
def range_first_base(tz_runs: int, r_dp: int, season_pct: float):
if (tz_runs + r_dp) >= max(6 * season_pct, 2):
return 1
elif (drs + r_dp) >= (1 * season_pct):
elif (tz_runs + r_dp) >= max(2 * season_pct, 1):
return 2
elif (drs + r_dp) >= (-1 * season_pct):
elif (tz_runs + r_dp) >= min(-1 * season_pct, -1):
return 3
elif (drs + r_dp) >= (-3 * season_pct):
elif (tz_runs + r_dp) >= min(-3 * season_pct, -3):
return 4
else:
return 5
def range_second_base(drs: int, r_dp: int, season_pct: float):
if (drs + r_dp) >= (8 * season_pct):
def range_second_base(tz_runs: int, r_dp: int, season_pct: float):
if (tz_runs + r_dp) >= max(6 * season_pct, 2):
return 1
elif (drs + r_dp) >= (2 * season_pct):
elif (tz_runs + r_dp) >= max(2 * season_pct, 1):
return 2
elif (drs + r_dp) >= (0 * season_pct):
elif (tz_runs + r_dp) >= min(-1 * season_pct, -1):
return 3
elif (drs + r_dp) >= (-3 * season_pct):
elif (tz_runs + r_dp) >= min(-3 * season_pct, -3):
return 4
else:
return 5
def range_third_base(drs: int, r_dp: int, season_pct: float):
if (drs + r_dp) >= (5 * season_pct):
def range_third_base(tz_runs: int, r_dp: int, season_pct: float):
if (tz_runs + r_dp) >= max(6 * season_pct, 2):
return 1
elif (drs + r_dp) >= (2 * season_pct):
elif (tz_runs + r_dp) >= max(2 * season_pct, 1):
return 2
elif (drs + r_dp) >= (0 * season_pct):
elif (tz_runs + r_dp) >= min(-1 * season_pct, -1):
return 3
elif (drs + r_dp) >= (-3 * season_pct):
elif (tz_runs + r_dp) >= min(-3 * season_pct, -3):
return 4
else:
return 5
def range_shortstop(drs: int, r_dp: int, season_pct: float):
if (drs + r_dp) >= (9 * season_pct):
def range_shortstop(tz_runs: int, r_dp: int, season_pct: float):
if (tz_runs + r_dp) >= max(8 * season_pct, 2):
return 1
elif (drs + r_dp) >= (2 * season_pct):
elif (tz_runs + r_dp) >= max(2 * season_pct, 1):
return 2
elif (drs + r_dp) >= (0 * season_pct):
elif (tz_runs + r_dp) >= min(-1 * season_pct, -1):
return 3
elif (drs + r_dp) >= (-3 * season_pct):
elif (tz_runs + r_dp) >= min(-3 * season_pct, -3):
return 4
else:
return 5
def get_if_range(pos_code: str, tz_runs: int, r_dp: int, season_pct: float):
logging.debug(f'pos: {pos_code} / tz_runs: {tz_runs} ({type(tz_runs)})')
if pos_code == '1b':
return range_first_base(tz_runs, 0, season_pct)
elif pos_code == '2b':
return range_second_base(tz_runs, 0, season_pct)
elif pos_code == '3b':
return range_third_base(tz_runs, 0, season_pct)
elif pos_code == 'ss':
return range_shortstop(tz_runs, 0, season_pct)
else:
raise ValueError(f'get_if_range - pos_code must be one of 1b, 2b, 3b, ss / {pos_code} not valid')
def range_center_field(drs: int, season_pct: float):
if drs >= 9 * season_pct:
return 1
elif drs >= 2 * season_pct:
elif drs >= 3 * season_pct:
return 2
elif drs >= -1 * season_pct:
return 3
@ -100,6 +119,16 @@ def range_right_field(drs: int, season_pct: float):
return range_center_field(drs, season_pct)
def get_of_range(pos_code: str, tz_runs: int, season_pct: float):
logging.info(f'pos: {pos_code} / tz_runs: {tz_runs}')
if pos_code == 'lf':
return range_left_field(tz_runs, season_pct)
elif pos_code == 'cf':
return range_center_field(tz_runs, season_pct)
else:
return range_right_field(tz_runs, season_pct)
def valid_error_ratings(err_num: int, position: str) -> int:
if position.lower() == 'p':
valid_err = [
@ -175,24 +204,40 @@ def error_outfield(errors: int, chances: int, season_pct: float):
return valid_error_ratings(int(raw_error(errors, chances, season_pct, 250)), 'of')
def get_any_error(pos_code: str, errors: int, chances: int, season_pct: float):
if pos_code == 'p':
return error_pitcher(errors, chances, season_pct)
elif pos_code == 'c':
return error_catcher(errors, chances, season_pct)
elif pos_code == '1b':
return error_first_base(errors, chances, season_pct)
elif pos_code == '2b':
return error_second_base(errors, chances, season_pct)
elif pos_code == '3b':
return error_third_base(errors, chances, season_pct)
elif pos_code == 'ss':
return error_shortstop(errors, chances, season_pct)
elif pos_code in ['lf', 'cf', 'rf', 'of']:
return error_outfield(errors, chances, season_pct)
def arm_outfield(all_arms: list):
if not all_arms:
return '+5'
return 5
if max(all_arms) > 8:
return '-6'
return -6
elif max(all_arms) > 4:
return '-5'
return -5
elif max(all_arms) < -4:
return '+5'
return +5
else:
final_arm = max(all_arms) * -1
return f'{"+" if final_arm >= 0 else ""}{final_arm}'
return max(all_arms) * -1
def arm_catcher(cs_pct: str, raa: int, season_pct: float) -> str:
def arm_catcher(cs_pct: str, raa: int, season_pct: float) -> int:
if cs_pct == '':
return '+3'
return 3
cs_pct = float(cs_pct.strip("%")) / 100
if raa > 5 * season_pct:
@ -229,15 +274,14 @@ def arm_catcher(cs_pct: str, raa: int, season_pct: float) -> str:
else:
raw_arm = 5
final_arm = min(max_arm, raw_arm)
return f'{"+" if final_arm >= 0 else ""}{final_arm}'
return int(min(max_arm, raw_arm))
def pb_catcher(pb: int, innings: int, season_pct: float):
if pb == 0 or innings == 0:
return 0
return abs(min(pb * 1000 * season_pct / innings, 20))
return int(abs(min(pb * 1000 * season_pct / innings, 20)))
def ot_catcher(errors: int, chances: int, season_pct: float):
@ -245,7 +289,7 @@ def ot_catcher(errors: int, chances: int, season_pct: float):
return 0
c_max = 3000 * season_pct
return min(errors * c_max / chances / 3, 20)
return int(min(errors * c_max / chances / 3, 20))
def hold_pitcher(raw_cs: str, picks: int, season_pct: float) -> str:
@ -328,3 +372,36 @@ def innings_float(innings: str) -> float:
decimal = "0"
return float(int(whole) + int(decimal) * .333)
# Get position stats into dataframes
def get_bbref_fielding_df(
position: Literal['p', 'c', '1b', '2b', '3b', 'ss', 'lf', 'cf', 'rf', 'of'], s_num: int):
url = f'https://www.baseball-reference.com/leagues/majors/{s_num}-specialpos_{position}-fielding.shtml'
soup = BeautifulSoup(requests.get(url).text, 'html.parser')
table = soup.find('table', {'id': 'players_players_standard_fielding_fielding'})
headers = []
data = []
indeces = []
for row in table.find_all('tr'):
row_data = []
col_names = []
for cell in row.find_all('td'):
try:
player_id = cell['data-append-csv']
row_data.append(player_id)
if len(headers) == 0:
col_names.append('key_bbref')
except Exception as e:
pass
row_data.append(cell.text)
if len(headers) == 0:
col_names.append(cell['data-stat'])
if len(row_data) > 0:
data.append(row_data)
indeces.append(row_data[0])
if len(headers) == 0:
headers.extend(col_names)
pos_frame = pd.DataFrame(data, index=indeces, columns=headers).query('key_bbref == key_bbref')
tmp = pos_frame[~pos_frame['chances'].isin(['0', '1', '2'])]
return tmp.drop_duplicates(subset=['key_bbref'], keep='first')

View File

@ -136,6 +136,37 @@ async def db_post(endpoint: str, api_ver: int = 2, payload: dict = None, timeout
raise ValueError(f'DB: {resp.text}')
async def db_put(endpoint: str, api_ver: int = 2, payload: dict = None, timeout: int = 3):
req_url = get_req_url(endpoint, api_ver=api_ver)
log_string = f'post:\n{endpoint} payload: {payload}\ntype: {type(payload)}'
logging.info(log_string) if master_debug else logging.debug(log_string)
retries = 0
while True:
try:
resp = requests.put(req_url, json=payload, headers=AUTH_TOKEN, timeout=timeout)
break
except requests.Timeout as e:
logging.error(f'Post Timeout: {req_url} / retries: {retries} / timeout: {timeout}')
if retries > 1:
raise ConnectionError(f'DB: The internet was a bit too slow for me to grab the data I needed. Please '
f'hang on a few extra seconds and try again.')
timeout += [min(3, timeout), min(5, timeout)][retries]
retries += 1
if resp.status_code == 200:
data = resp.json()
log_string = f'{data}'
if master_debug:
logging.info(f'return: {log_string[:1200]}{" [ S N I P P E D ]" if len(log_string) > 1200 else ""}')
else:
logging.debug(f'return: {log_string[:1200]}{" [ S N I P P E D ]" if len(log_string) > 1200 else ""}')
return data
else:
logging.warning(resp.text)
raise ValueError(f'DB: {resp.text}')
async def db_delete(endpoint: str, object_id: int, api_ver: int = 2, timeout=3):
req_url = get_req_url(endpoint, api_ver=api_ver, object_id=object_id)
log_string = f'delete:\n{endpoint} {object_id}'

View File

@ -1,17 +1,21 @@
import asyncio
import copy
import csv
import datetime
import html5lib
import logging
import random
import requests
import calcs_batter as cb
import calcs_batter as cba
import calcs_defense as cde
import calcs_pitcher as cpi
import pandas as pd
import pybaseball as pb
import pydantic
import sys
from db_calls import db_get
from db_calls import db_get, db_put, db_post
from typing import Literal
from bs4 import BeautifulSoup
@ -22,6 +26,36 @@ logging.basicConfig(
format='%(asctime)s - card-creation - %(levelname)s - %(message)s',
level=log_level
)
CARD_BASE_URL = 'https://sombaseball.ddns.net/cards/pd'
def sanitize_name(start_name: str) -> str:
return (start_name
.replace("é", "e")
.replace("á", "a")
.replace(".", "")
.replace("Á", "A")
.replace("ñ", "n")
.replace("ó", "o")
.replace("í", "i")
.replace("ú", "u"))
def get_args(args):
logging.info(f'Process arguments: {args}')
final_args = {}
for x in args:
if "=" not in x:
raise TypeError(f'Invalid <key>=<value> argument: {x}')
key, value = x.split("=")
logging.info(f'key: {key} / value: {value}')
if key in final_args:
raise ValueError(f'Duplicate argument: {key}')
final_args[key] = value
return final_args
# class BattingStat(pydantic.BaseModel):
@ -55,26 +89,34 @@ logging.basicConfig(
# oppo_rate: float = None
async def main(argv):
cardset_name = input(f'What is the name of this Cardset? ')
async def main(args):
arg_data = get_args(args)
# cardset_name = input(f'What is the name of this Cardset? ')
cardset_name = arg_data['cardset_name']
print(f'Searching for cardset: {cardset_name}')
c_query = await db_get('cardsets', params=[('name', cardset_name)])
if c_query['count'] == 0:
print(f'I do not see a cardset named {cardset_name}')
return
cardset = c_query['cardsets'][0]
print(f'Cardset ID: {cardset["id"]}')
game_count = int(input(f'How many games out of 162 have been played? '))
if 'season' in arg_data:
season = arg_data['season']
else:
season = int(cardset['name'][:4])
game_count = int(arg_data['games_played'])
if game_count < 1 or game_count > 162:
print(f'Game count has to be between 1 and 162.')
return
season_pct = game_count / 162
print(f'Cardset ID: {cardset["id"]} / Season: {season}\nGame count: {game_count} / Season %: {season_pct}\n')
start_time = datetime.datetime.now()
release_directory = f'{season}-{datetime.datetime.now().month}{datetime.datetime.now().day}'
input_path = f'data-input/{cardset["name"]} Cardset/'
# print(f"\nI'll be reading from the following files:\n"
# f"{input_path}vlhp-basic.csv\n{input_path}vlhp-rate.csv\n{input_path}vrhp-basic.csv\n"
# f"{input_path}vrhp-rate.csv\n{input_path}running.csv")
print('Reading batting stats...')
vl_basic = pd.read_csv(f'{input_path}vlhp-basic.csv').query('PA >= 20')
@ -103,27 +145,85 @@ async def main(argv):
else:
return 'R'
async def get_offense_col(df_data):
p_query = await db_get('mlbplayers', api_ver=2, params=[('key_bbref', df_data['key_bbref'])])
if p_query['count'] > 0:
return p_query['players'][0]['offense_col']
else:
return random.randint(1, 3)
print(f'Pulling PD player IDs...')
p_query = await db_get('players', params=[('inc_dex', False), ('cardset_id', cardset['id'])])
if p_query['count'] == 0:
raise ValueError(f'No players returned from Paper Dynasty API')
pd_players = pd.DataFrame(p_query['players']).rename(columns={'bbref_id': 'key_bbref'})
print(f'Pulling player IDs...')
ids_and_names = all_batting.apply(get_pids, axis=1, result_type='expand')
final_batting = ids_and_names.query('key_mlbam == key_mlbam').join(all_batting)
print(f'Player IDs linked...{len(final_batting.values)} players remain\n')
print(f'Now pulling mlbam player IDs...')
ids_and_names = all_batting.apply(get_pids, axis=1)
player_data = (ids_and_names
.merge(pd_players, left_on='key_bbref', right_on='key_bbref')
.query('key_mlbam == key_mlbam')
.set_index('key_bbref', drop=False))
print(f'Matched mlbam to pd players.')
new_players = []
def create_players(df_data):
f_name = sanitize_name(df_data["name_first"]).title()
l_name = sanitize_name(df_data["name_last"]).title()
new_players.append({
'p_name': f'{f_name} {l_name}',
'cost': 99999,
'image': f'{CARD_BASE_URL}/{release_directory}/{f_name.lower()}-{l_name.lower()}.png',
'mlbclub': 'None',
'franchise': 'None',
'cardset_id': cardset['id'],
'set_num': df_data['key_fangraphs'],
'rarity_id': 99,
'pos_1': 'DH',
'description': f'Live {f_name} {l_name}',
'bbref_id': df_data.name,
'fangr_id': int(float(df_data['key_fangraphs']))
})
player_data[player_data['player_id'].isnull()].apply(create_players, axis=1)
print(f'Creating {len(new_players)} new players...')
for x in new_players:
this_player = await db_post('players', payload=x)
player_data.at[x['bbref_id'], 'player_id'] = this_player['player_id']
player_data.at[x['bbref_id'], 'p_name'] = this_player['p_name']
final_batting = pd.merge(
player_data, all_batting, left_on='key_fangraphs', right_on='playerId', sort=False
).set_index('key_bbref', drop=False)
del ids_and_names, all_batting, pd_players
print(f'Player IDs linked to batting stats.\n{len(final_batting.values)} players remain\n')
print(f'Reading baserunning stats...')
run_data = pd.read_csv(f'{input_path}running.csv').rename(columns={"Name-additional": "key_bbref"})
run_data = (pd.read_csv(f'{input_path}running.csv')
.set_index('Name-additional'))
run_data['bat_hand'] = run_data.apply(get_hand, axis=1)
offense_stats = pd.merge(final_batting, run_data, on="key_bbref")
offense_stats = final_batting.join(run_data)
del final_batting, run_data
print(f'Stats are tallied\n')
print(f'Stats are tallied\n{len(offense_stats.values)} players remain\n\nCollecting defensive data from bbref...')
# print(f'Pulling pitcher defense...')
# df_p = cde.get_bbref_fielding_df('p', season)
# print(f'Pulling catcher defense...')
# df_c = cde.get_bbref_fielding_df('c', season)
# print(f'Pulling first base defense...')
# df_1b = cde.get_bbref_fielding_df('1b', season)
# print(f'Pulling second base defense...')
# df_2b = cde.get_bbref_fielding_df('2b', season)
# print(f'Pulling third base defense...')
# df_3b = cde.get_bbref_fielding_df('3b', season)
# print(f'Pulling short stop defense...')
# df_ss = cde.get_bbref_fielding_df('ss', season)
# print(f'Pulling left field defense...')
# df_lf = cde.get_bbref_fielding_df('lf', season)
# print(f'Pulling center field defense...')
# df_cf = cde.get_bbref_fielding_df('cf', season)
# print(f'Pulling right field defense...')
# df_rf = cde.get_bbref_fielding_df('rf', season)
# print(f'Pulling outfield defense...')
# df_of = cde.get_bbref_fielding_df('of', season)
print(f'Positions data is retrieved')
batting_cards = []
def create_batting_card(df_data):
s_data = cb.stealing(
s_data = cba.stealing(
chances=df_data['SBO'],
sb2s=df_data['SB2'],
cs2s=df_data['CS2'],
@ -131,166 +231,144 @@ async def main(argv):
cs3s=df_data['CS3'],
season_pct=season_pct
)
return {
batting_cards.append({
"player_id": df_data['player_id'],
"key_bbref": df_data.name,
"key_fangraphs": df_data['key_fangraphs'],
"key_mlbam": df_data['key_mlbam'],
"key_retro": df_data['key_retro'],
"name_first": df_data["name_first"].title(),
"name_last": df_data["name_last"].title(),
"steal_low": s_data[0],
"steal_high": s_data[1],
"steal_auto": s_data[2],
"steal_jump": s_data[3],
"hit_and_run": cb.hit_and_run(
"hit_and_run": cba.hit_and_run(
df_data['AB_vL'], df_data['AB_vR'], df_data['H_vL'], df_data['H_vR'],
df_data['HR_vL'], df_data['HR_vR'], df_data['SO_vL'], df_data['SO_vR']
),
"running": cb.running(df_data['XBT%']),
"running": cba.running(df_data['XBT%']),
"hand": df_data['bat_hand']
}
})
print(f'Calculating batting cards...')
offense_stats['batting_card'] = offense_stats.apply(create_batting_card, axis=1)
print(f'Cards are complete\n')
offense_stats.apply(create_batting_card, axis=1)
print(f'Cards are complete.\n\nPosting cards now...')
# resp = await db_put('battingcards', payload={'cards': batting_cards}, timeout=30)
# print(f'Response: {resp}\n')
position_payload = []
# def create_positions(df_data):
# for pos_data in [(df_1b, '1b'), (df_2b, '2b'), (df_3b, '3b'), (df_ss, 'ss')]:
# if df_data.name in pos_data[0].index:
# logging.debug(f'Running {pos_data[1]} stats for {player_data.at[df_data.name, "p_name"]}')
# position_payload.append({
# "player_id": int(player_data.at[df_data.name, 'player_id']),
# "position": pos_data[1].upper(),
# "innings": float(pos_data[0].at[df_data.name, 'Inn_def']),
# "range": cde.get_if_range(
# pos_code=pos_data[1],
# tz_runs=int(pos_data[0].at[df_data.name, 'tz_runs_total']),
# r_dp=0,
# season_pct=season_pct
# ),
# "error": cde.get_any_error(
# pos_code=pos_data[1],
# errors=int(pos_data[0].at[df_data.name, 'E_def']),
# chances=int(pos_data[0].at[df_data.name, 'chances']),
# season_pct=season_pct
# )
# })
#
# of_arms = []
# of_payloads = []
# for pos_data in [(df_lf, 'lf'), (df_cf, 'cf'), (df_rf, 'rf')]:
# if df_data.name in pos_data[0].index:
# of_payloads.append({
# "player_id": int(player_data.at[df_data.name, 'player_id']),
# "position": pos_data[1].upper(),
# "innings": float(pos_data[0].at[df_data.name, 'Inn_def']),
# "range": cde.get_of_range(
# pos_code=pos_data[1],
# tz_runs=int(pos_data[0].at[df_data.name, 'tz_runs_total']),
# season_pct=season_pct
# )
# })
# of_arms.append(int(pos_data[0].at[df_data.name, 'bis_runs_outfield']))
#
# if df_data.name in df_of.index and len(of_arms) > 0 and len(of_payloads) > 0:
# error_rating = cde.get_any_error(
# pos_code=pos_data[1],
# errors=int(df_of.at[df_data.name, 'E_def']),
# chances=int(df_of.at[df_data.name, 'chances']),
# season_pct=season_pct
# )
# arm_rating = cde.arm_outfield(of_arms)
# for f in of_payloads:
# f['error'] = error_rating
# f['arm'] = arm_rating
# position_payload.append(f)
#
# if df_data.name in df_c.index:
# if df_c.at[df_data.name, 'SB'] + df_c.at[df_data.name, 'CS'] == 0:
# arm_rating = 3
# else:
# arm_rating = cde.arm_catcher(
# cs_pct=df_c.at[df_data.name, 'caught_stealing_perc'],
# raa=int(df_c.at[df_data.name, 'bis_runs_catcher_sb']),
# season_pct=season_pct
# )
# position_payload.append({
# "player_id": int(player_data.at[df_data.name, 'player_id']),
# "position": 'C',
# "innings": float(df_c.at[df_data.name, 'Inn_def']),
# "range": cde.range_catcher(
# rs_value=int(df_c.at[df_data.name, 'tz_runs_catcher']),
# season_pct=season_pct
# ),
# "error": cde.get_any_error(
# pos_code='c',
# errors=int(df_c.at[df_data.name, 'E_def']),
# chances=int(df_c.at[df_data.name, 'chances']),
# season_pct=season_pct
# ),
# "arm": arm_rating,
# "pb": cde.pb_catcher(
# pb=int(df_c.at[df_data.name, 'PB']),
# innings=int(float(df_c.at[df_data.name, 'Inn_def'])),
# season_pct=season_pct
# ),
# "overthrow": cde.ot_catcher(
# errors=int(df_c.at[df_data.name, 'E_def']),
# chances=int(df_c.at[df_data.name, 'chances']),
# season_pct=season_pct
# )
# })
#
# print(f'Calculating fielding lines now...')
# offense_stats.apply(create_positions, axis=1)
# print(f'Fielding is complete.\n\nPosting positions now...')
# resp = await db_put('cardpositions', payload={'positions': position_payload}, timeout=30)
# print(f'Response: {resp}\n')
batting_ratings = []
def create_batting_card_ratings(df_data):
vl = cb.BattingCardRatingsModel(vs_hand='L')
vr = cb.BattingCardRatingsModel(vs_hand='R')
# TODO: Build Batting Card Ratings
logging.info(f'Calculating card ratings for {df_data.name}')
batting_ratings.extend(cba.get_batter_ratings(df_data))
print(f'Calculating card ratings...')
offense_stats['batting_card_ratings'] = offense_stats.apply(create_batting_card_ratings, axis=1)
print(f'Ratings are complete\n')
offense_stats.apply(create_batting_card_ratings, axis=1)
print(f'Ratings are complete\n\nPosting ratings now...')
# resp = await db_put('battingcardratings', payload={'ratings': batting_ratings}, timeout=30)
# Get position stats into dataframes
# Update player record with positions, rarity, cost
# Cost only changes if starting cost is 99999 or calculated rarity is different than current
# batting_data = {} # { <fg id>: { 'vL': BattingStat, 'vR': BattingStat, 'run': } }
#
# with open(f'{input_path}vlhp-basic.csv', 'r', encoding='utf8') as file:
# reader = csv.reader(file)
# logging.info(f'Reading vLHP Basic')
# for row in reader:
# logging.info(f'Reading vL basic / player id: {row[23]} / name: {row[1]}')
# if row[0] != 'Season' and int(row[4]) >= 20:
# batting_data[row[23]] = {
# 'vL': BattingStat(
# fg_id=row[23],
# vs_hand='L',
# pa=row[4],
# hit=row[6],
# single=row[7],
# double=row[8],
# triple=row[9],
# homerun=row[10],
# rbi=row[12],
# bb=row[13],
# ibb=row[14],
# so=row[15],
# hbp=row[16],
# gidp=row[19],
# sb=row[20],
# cs=row[21],
# avg=row[22]
# ),
# 'vR': None
# }
# logging.info(f'Saved vL basic BattingStat for {row[1]}')
# else:
# logging.error(f'Invalid vL basic row; PA: {row[4]}')
#
# with open(f'{input_path}vlhp-rate.csv', 'r', encoding='utf8') as file:
# reader = csv.reader(file)
# logging.info(f'Reading vLHP Rate')
# for row in reader:
# logging.info(f'Reading vL rate / player id: {row[18]} / name: {row[1]}')
# if row[0] != 'Season' and int(row[3]) >= 20 and row[18] in batting_data:
# this_stat = batting_data[row[18]]['vL']
# this_stat.hard_rate = row[17]
# this_stat.med_rate = row[16]
# this_stat.soft_rate = row[15]
# this_stat.ifh_rate = row[10]
# this_stat.hr_per_fb = row[9]
# this_stat.ld_rate = row[5]
# this_stat.iffb_rate = row[8]
# this_stat.fb_rate = row[7]
# this_stat.pull_rate = row[12]
# this_stat.center_rate = row[13]
# this_stat.oppo_rate = row[14]
# logging.info(f'Saved vL rate BattingStat for {row[1]}')
# else:
# logging.error(f'Invalid vL rate row; PA: {row[3]}')
#
# with open(f'{input_path}vrhp-basic.csv', 'r', encoding='utf8') as file:
# reader = csv.reader(file)
# logging.info(f'Reading vRHP Basic')
# for row in reader:
# logging.info(f'Reading vR basic / player id: {row[23]} / name: {row[1]}')
# if row[0] != 'Season' and int(row[4]) >= 40:
# if row[23] in batting_data:
# batting_data[row[23]]['vR'] = BattingStat(
# fg_id=row[23],
# vs_hand='R',
# pa=row[4],
# hit=row[6],
# single=row[7],
# double=row[8],
# triple=row[9],
# homerun=row[10],
# rbi=row[12],
# bb=row[13],
# ibb=row[14],
# so=row[15],
# hbp=row[16],
# gidp=row[19],
# sb=row[20],
# cs=row[21],
# avg=row[22]
# )
# logging.info(f'Saved vR basic BattingStat for {row[1]}')
# else:
# logging.error(f'Player {row[1]} does not have a vL line - skipping vR line')
# else:
# logging.error(f'Invalid vR basic row; PA: {row[4]}')
#
# with open(f'{input_path}vrhp-rate.csv', 'r', encoding='utf8') as file:
# reader = csv.reader(file)
# logging.info(f'Reading vRHP Rate')
# for row in reader:
# logging.info(f'Reading vR rate / player id: {row[18]} / name: {row[1]}')
# if row[18] not in batting_data:
# logging.error(f'Invalid vR rate row / {row[1]} has no vL data')
# elif row[0] != 'Season' and int(row[3]) >= 40:
# this_stat = batting_data[row[18]]['vR']
# this_stat.hard_rate = row[17]
# this_stat.med_rate = row[16]
# this_stat.soft_rate = row[15]
# this_stat.ifh_rate = row[10]
# this_stat.hr_per_fb = row[9]
# this_stat.ld_rate = row[5]
# this_stat.iffb_rate = row[8]
# this_stat.fb_rate = row[7]
# this_stat.pull_rate = row[12]
# this_stat.center_rate = row[13]
# this_stat.oppo_rate = row[14]
# logging.info(f'Saved vR rate BattingStat for {row[1]}')
# else:
# logging.error(f'Invalid vR rate row; PA: {row[3]}')
#
# # TODO: run baserunning stats and add to batting_data['run']; will need to match bbref to fgid
# # with open(f'{input_path}running.csv', 'r', encoding='utf8') as file:
# # reader = csv.reader(file)
# # logging.info(f'Reading Running stats')
# # for row in reader:
# # logging.info(f'Reading running / ')
#
# full_bstats = []
# for x in batting_data.values():
# if x['vL'].hard_rate is None:
# logging.error(f'Missing vL rate data for player ID {x["vL"].fg_id}')
# elif x['vR'] is None:
# logging.error(f'Missing vR data for player ID {x["vL"].fg_id}')
# elif x['vR'].hard_rate is None:
# logging.error(f'Missing vR rate data for player ID {x["vR"].fg_id}')
# else:
# logging.info(f'Adding {x["vR"].fg_id} to be processed')
# full_bstats.append({'vL': x['vL'], 'vR': x['vR']})
# print(f'Ready to process {len(all_batting.index)} batters\n')
run_time = datetime.datetime.now() - start_time
print(f'Total batting cards: {len(batting_cards)}\nNew cardset batters: {len(new_players)}\n'
f'Program runtime: {round(run_time.total_seconds())} seconds')
if __name__ == '__main__':