# PostgreSQL Migration Testing Methodology ## Overview This document outlines the systematic approach for testing and refining the SQLite to PostgreSQL migration process before production deployment. ## 🔄 Iterative Testing Cycle ### Phase 1: Discovery Testing **Goal**: Identify all migration issues without fixing them ```bash # Run discovery cycle ./test_migration_workflow.sh > migration_test_$(date +%Y%m%d_%H%M%S).log 2>&1 ``` **Process**: 1. Reset PostgreSQL database 2. Run migration attempt 3. **Document ALL errors** (don't fix immediately) 4. Categorize issues by type 5. Assess impact and priority ### Phase 2: Systematic Issue Resolution **Goal**: Fix issues one category at a time **Priority Order**: 1. **Schema Issues** (data types, constraints) 2. **Data Integrity** (NULL values, foreign keys) 3. **Data Quality** (string lengths, integer ranges) 4. **Missing Dependencies** (table existence) 5. **Performance Issues** (batch sizes, indexing) ### Phase 3: Validation Testing **Goal**: Verify fixes and ensure no regressions ```bash # Run validation cycle ./test_migration_workflow.sh python validate_migration.py ``` ### Phase 4: Production Readiness **Goal**: Final verification before production ```bash # Final comprehensive test ./production_readiness_check.sh ``` ## 📊 Issue Tracking System ### Issue Categories #### 1. Schema Compatibility - **NULL Constraints**: Fields that require values in PostgreSQL - **Data Types**: Type mismatches (BigInt, Varchar limits) - **Constraints**: Unique, foreign key, check constraints #### 2. Data Integrity - **Foreign Key Violations**: Missing parent records - **Orphaned Records**: Child records without parents - **Referential Integrity**: Cross-table consistency #### 3. Data Quality - **String Length**: Values exceeding column limits - **Number Range**: Values outside PostgreSQL type ranges - **Date/Time Format**: Incompatible date representations #### 4. Migration Logic - **Table Dependencies**: Incorrect migration order - **Batch Processing**: Memory/performance issues - **Transaction Handling**: Rollback scenarios ## 🎯 Testing Success Criteria ### ✅ Complete Success - All tables migrated: **100%** - All record counts match: **100%** - Data validation passes: **100%** - Performance acceptable: **< 2x SQLite query time** ### ⚠️ Partial Success - Core tables migrated: **≥ 90%** - Critical data intact: **≥ 95%** - Documented workarounds for remaining issues ### ❌ Failure - Core tables failed: **> 10%** - Data corruption detected - Performance degradation: **> 5x SQLite** ## 📈 Progress Tracking ### Test Run Template ``` Date: YYYY-MM-DD HH:MM Test Run #: X Previous Issues: X resolved, Y remaining New Issues Found: Z Results: - Tables Migrated: X/Y (Z%) - Records Migrated: X,XXX,XXX total - Validation Status: PASS/FAIL - Test Duration: X minutes Issues Resolved This Run: 1. [CATEGORY] Description - Fix applied 2. [CATEGORY] Description - Fix applied New Issues Found: 1. [CATEGORY] Description - Priority: HIGH/MED/LOW 2. [CATEGORY] Description - Priority: HIGH/MED/LOW Next Actions: - [ ] Fix issue #1 - [ ] Test scenario X - [ ] Validate table Y ``` ## 🔧 Development Workflow ### Before Each Test Run ```bash # 1. Document current state git status git add -A git commit -m "Pre-test state: $(date)" # 2. Reset environment python reset_postgres.py # 3. Run test with logging ./test_migration_workflow.sh | tee "logs/test_run_$(date +%Y%m%d_%H%M%S).log" ``` ### After Each Test Run ```bash # 1. Document results cp migration_issues.md migration_issues_$(date +%Y%m%d).md # 2. Update issue tracker echo "## Test Run $(date)" >> migration_progress.md # 3. Commit progress git add -A git commit -m "Test run $(date): X issues resolved, Y remaining" ``` ## 🚨 Critical Guidelines ### DO NOT Skip Steps - Always reset database between tests - Always run full validation after fixes - Always document issues before fixing ### DO NOT Batch Fix Issues - Fix one category at a time - Test after each category of fixes - Verify no regressions introduced ### DO NOT Ignore "Minor" Issues - All data discrepancies must be documented - Even successful migrations need validation - Performance issues compound in production ## 📋 Pre-Production Checklist ### Data Verification - [ ] All table counts match exactly - [ ] Sample data integrity verified - [ ] Foreign key relationships intact - [ ] No data truncation occurred - [ ] Character encoding preserved ### Performance Verification - [ ] Migration completes within time window - [ ] Query performance acceptable - [ ] Index creation successful - [ ] Connection pooling tested ### Operational Verification - [ ] Backup/restore procedures tested - [ ] Rollback plan verified - [ ] Monitoring alerts configured - [ ] Documentation updated ### Security Verification - [ ] Access controls migrated - [ ] Connection security verified - [ ] Audit trail preserved - [ ] Compliance requirements met ## 🎯 Success Metrics ### Quantitative - **Data Accuracy**: 100% record count match - **Data Quality**: 0 corruption events - **Performance**: ≤ 2x query time vs SQLite - **Availability**: < 1 hour downtime ### Qualitative - **Confidence Level**: High team confidence - **Documentation**: Complete and accurate - **Rollback Plan**: Tested and verified - **Team Training**: Staff ready for operations --- *This methodology ensures systematic, repeatable testing that builds confidence for production migration.*