- Add comprehensive Tdarr troubleshooting and GPU transcoding documentation - Create /scripts directory for active operational scripts - Archive mapped node example in /examples for reference - Update CLAUDE.md with scripts directory context triggers - Add distributed transcoding patterns and NVIDIA troubleshooting guides - Enhance documentation structure with clear directory usage guidelines 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
45 lines
1.2 KiB
YAML
45 lines
1.2 KiB
YAML
version: "3.4"
|
|
services:
|
|
tdarr-node:
|
|
container_name: tdarr-node-local-gpu
|
|
image: ghcr.io/haveagitgat/tdarr_node:latest
|
|
restart: unless-stopped
|
|
environment:
|
|
- TZ=America/Chicago
|
|
- UMASK_SET=002
|
|
- nodeName=local-workstation-gpu
|
|
- serverIP=192.168.1.100 # Replace with your Tdarr server IP
|
|
- serverPort=8266
|
|
- inContainer=true
|
|
- ffmpegVersion=6
|
|
# NVIDIA environment variables
|
|
- NVIDIA_DRIVER_CAPABILITIES=all
|
|
- NVIDIA_VISIBLE_DEVICES=all
|
|
volumes:
|
|
# Media access (same as server)
|
|
- /mnt/media:/media # Replace with your media path
|
|
# Local transcoding cache
|
|
- ./temp:/temp
|
|
devices:
|
|
- /dev/dri:/dev/dri # Intel/AMD GPU fallback
|
|
|
|
# GPU configuration - choose ONE method:
|
|
|
|
# Method 1: Deploy syntax (recommended)
|
|
deploy:
|
|
resources:
|
|
limits:
|
|
memory: 16G # GPU transcoding uses less RAM
|
|
reservations:
|
|
memory: 8G
|
|
devices:
|
|
- driver: nvidia
|
|
count: all
|
|
capabilities: [gpu]
|
|
|
|
# Method 2: Runtime (alternative)
|
|
# runtime: nvidia
|
|
|
|
# Method 3: CDI (future)
|
|
# devices:
|
|
# - nvidia.com/gpu=all |