# Docker Container Technology - Technology Context ## Overview Docker containerization for home lab environments with focus on performance optimization, GPU acceleration, and distributed workloads. This context covers container architecture patterns, security practices, and production deployment strategies. ## Architecture Patterns ### Container Design Principles 1. **Single Responsibility**: One service per container 2. **Immutable Infrastructure**: Treat containers as replaceable units 3. **Resource Isolation**: Use container limits and cgroups 4. **Security First**: Run as non-root, minimal attack surface 5. **Configuration Management**: Environment variables and external configs ### Multi-Stage Build Pattern **Purpose**: Minimize production image size and attack surface ```dockerfile # Build stage FROM node:18 AS builder WORKDIR /app COPY package*.json ./ RUN npm ci --only=production # Production stage FROM node:18-alpine AS production WORKDIR /app COPY --from=builder /app/node_modules ./node_modules COPY . . USER 1000 EXPOSE 3000 CMD ["node", "server.js"] ``` ### Distributed Application Architecture **Pattern**: Server-Node separation with specialized workloads ``` ┌─────────────────┐ ┌──────────────────────────────────┐ │ Control Plane │ │ Worker Nodes │ │ │ │ ┌─────────┐ ┌─────────┐ │ │ - Web Interface│◄──►│ │ Node 1 │ │ Node 2 │ ... │ │ - Job Queue │ │ │ GPU+CPU │ │ GPU+CPU │ │ │ - Coordination │ │ │Local SSD│ │Local SSD│ │ │ │ │ └─────────┘ └─────────┘ │ └─────────────────┘ └──────────────────────────────────┘ │ │ └──────── Shared Storage ──────┘ (NAS/SAN for persistence) ``` ## Container Runtime Platforms ### Docker vs Podman Comparison **Docker**: Traditional daemon-based approach - Requires Docker daemon running as root - Centralized container management - Established ecosystem and tooling **Podman** (Recommended for GPU workloads): - Daemonless architecture - Better GPU integration with NVIDIA - Rootless containers for enhanced security - Direct systemd integration ### GPU Acceleration Support **NVIDIA Container Toolkit Integration**: ```bash # Podman GPU configuration (recommended) podman run -d --name gpu-workload \ --device nvidia.com/gpu=all \ -e NVIDIA_DRIVER_CAPABILITIES=all \ -e NVIDIA_VISIBLE_DEVICES=all \ myapp:latest # Docker GPU configuration docker run -d --name gpu-workload \ --gpus all \ -e NVIDIA_DRIVER_CAPABILITIES=all \ myapp:latest ``` ## Performance Optimization Patterns ### Hybrid Storage Strategy **Pattern**: Balance performance and persistence for different data types ```yaml volumes: # Local storage (SSD/NVMe) - High Performance - ./app/data:/app/data # Database - frequent I/O - ./app/configs:/app/configs # Config - startup performance - ./app/logs:/app/logs # Logs - continuous writing - ./cache:/cache # Work directories - temp processing # Network storage (NAS) - Persistence & Backup - /mnt/nas/backups:/app/backups # Backups - infrequent access - /mnt/nas/media:/media:ro # Source data - read-only ``` **Benefits**: - **Local Operations**: 100x faster database performance vs network - **Network Reliability**: Critical data protected on redundant storage - **Cost Optimization**: Expensive fast storage only where needed ### Cache Optimization Hierarchy ```bash # Performance tiers for different workload types /dev/shm/cache/ # RAM disk - fastest, volatile, limited size /mnt/nvme/cache/ # NVMe SSD - 3-7GB/s, persistent, recommended /mnt/ssd/cache/ # SATA SSD - 500MB/s, good balance /mnt/nas/cache/ # Network - 100MB/s, legacy compatibility ``` ### Resource Management **Container Limits** (prevent resource exhaustion): ```yaml deploy: resources: limits: memory: 8G cpus: '6' reservations: memory: 4G cpus: '2' ``` **Networking Optimization**: ```yaml # Host networking for performance-critical applications network_mode: host # Bridge networking with port mapping (default) network_mode: bridge ports: - "8080:8080" ``` ## Security Patterns ### Container Hardening ```dockerfile # Use minimal base images FROM alpine:3.18 # Run as non-root user RUN addgroup -g 1000 appuser && \ adduser -u 1000 -G appuser -s /bin/sh -D appuser USER 1000 # Set secure permissions COPY --chown=appuser:appuser . /app ``` ### Environment Security ```bash # Secrets management (avoid environment variables for secrets) podman secret create db_password password.txt podman run --secret db_password myapp:latest # Network isolation podman network create --driver bridge isolated-net podman run --network isolated-net myapp:latest ``` ### Image Security 1. **Vulnerability Scanning**: Regular image scans with tools like Trivy 2. **Version Pinning**: Use specific tags, avoid `latest` 3. **Minimal Images**: Distroless or Alpine base images 4. **Layer Optimization**: Minimize layers, combine RUN commands ## Development Workflows ### Local Development Pattern ```yaml # docker-compose.dev.yml version: "3.8" services: app: build: . volumes: - .:/app # Code hot-reload - /app/node_modules # Preserve dependencies environment: - NODE_ENV=development ports: - "3000:3000" ``` ### Production Deployment Pattern ```bash # Production container with health checks podman run -d --name production-app \ --restart unless-stopped \ --health-cmd="curl -f http://localhost:3000/health || exit 1" \ --health-interval=30s \ --health-timeout=10s \ --health-retries=3 \ -p 3000:3000 \ myapp:v1.2.3 ``` ## Monitoring and Observability ### Health Check Implementation ```dockerfile # Application health check HEALTHCHECK --interval=30s --timeout=3s --start-period=5s --retries=3 \ CMD curl -f http://localhost:3000/health || exit 1 ``` ### Log Management ```bash # Structured logging with log rotation podman run -d --name app \ --log-driver journald \ --log-opt max-size=10m \ --log-opt max-file=3 \ myapp:latest # Centralized logging podman logs -f app | logger -t myapp ``` ### Resource Monitoring ```bash # Real-time container metrics podman stats --no-stream app # Historical resource usage podman exec app cat /sys/fs/cgroup/memory/memory.usage_in_bytes ``` ## Common Implementation Patterns ### Database Containers ```yaml # Persistent database with backup strategy services: postgres: image: postgres:15-alpine environment: POSTGRES_DB: myapp POSTGRES_USER: appuser POSTGRES_PASSWORD_FILE: /run/secrets/db_password volumes: - postgres_data:/var/lib/postgresql/data # Persistent data - ./backups:/backups # Backup mount secrets: - db_password ``` ### Web Application Containers ```yaml # Multi-tier web application services: frontend: image: nginx:alpine volumes: - ./nginx.conf:/etc/nginx/nginx.conf:ro ports: - "80:80" - "443:443" depends_on: - backend backend: build: ./api environment: - DATABASE_URL=postgresql://appuser@postgres/myapp depends_on: - postgres ``` ### GPU-Accelerated Workloads ```bash # GPU transcoding/processing container podman run -d --name gpu-processor \ --device nvidia.com/gpu=all \ -e NVIDIA_DRIVER_CAPABILITIES=compute,video \ -v "/fast-storage:/cache" \ -v "/media:/input:ro" \ -v "/output:/output" \ gpu-app:latest ``` ## Best Practices ### Production Deployment 1. **Use specific image tags**: Never use `latest` in production 2. **Implement health checks**: Application and infrastructure monitoring 3. **Resource limits**: Prevent resource exhaustion 4. **Backup strategy**: Regular backups of persistent data 5. **Security scanning**: Regular vulnerability assessments ### Development Guidelines 1. **Multi-stage builds**: Separate build and runtime environments 2. **Environment parity**: Keep dev/staging/prod similar 3. **Configuration externalization**: Use environment variables and secrets 4. **Dependency management**: Pin versions, use lock files 5. **Testing strategy**: Unit, integration, and container tests ### Operational Excellence 1. **Log aggregation**: Centralized logging strategy 2. **Metrics collection**: Application and infrastructure metrics 3. **Alerting**: Proactive monitoring and alerting 4. **Documentation**: Container documentation and runbooks 5. **Disaster recovery**: Backup and recovery procedures ## Migration Patterns ### Legacy Application Containerization 1. **Assessment**: Identify dependencies and requirements 2. **Dockerfile creation**: Start with appropriate base image 3. **Configuration externalization**: Move configs to environment variables 4. **Data persistence**: Identify and volume mount data directories 5. **Testing**: Validate functionality in containerized environment ### Platform Migration (Docker to Podman) ```bash # Export Docker container configuration docker inspect mycontainer > container-config.json # Convert to Podman run command podman run -d --name mycontainer \ --memory 4g \ --cpus 2 \ -v /host/path:/container/path \ myimage:tag ``` This technology context provides comprehensive guidance for implementing Docker containerization strategies in home lab and production environments.